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Abstract 

Chronic periodontitis is one of the most common oral disease in world. The 

prevalence is 11.2% globally, 15-20% in Asians and 26% in Thai adults. Symptoms are 

negligible until it is too late and results in loss of tooth and quality of life. To diagnose chronic 

periodontitis, a chair side examination by a dentist or an oral hygienist is required to measure at 

six sites of the gingival sulcus for every available tooth. This process is time and resource 

consuming, so a predictive model to identify the risk of having chronic periodontitis in a person 

can be of assistance.  

Currently, several literatures have applied logistic regression, using relevant 

demographic or risk behaviors as predictors. While logistic regression models are simple to 

interpret or to apply, their performance can be less optimal depending on features selection and 

engineering. Machine learning models recently has been increasingly applied in medical and 

health related fields for their more complex yet powerful performances.  

With our study, we apply machine learning models such as mixed effects logistic 

regression, recurrent neural networks, and mixed effects support vector machine for diagnosis 

of chronic periodontitis. Using Electric Generation Authority of Thailand (EGAT) cohort 2nd 

survey, the models are trained upon longitudinal data. We observe that mixed effects logistic 

regression model (90.5% accuracy) performs better than conventional logistic regression 

models as well as other machine learning models  (70.0% accuracy for RNN and 72.7% for 

MESVM)  even after hyperparameter optimizations. Trained models can be applicable in 

situations such as screening in community and public health missions as well as electronic health 

records (EHRs). 
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CHAPTER I 

BACKGROUND & RATIONALE 

 

 
1.1.  Background and Rationale 

Periodontitis is one of the most common oral diseases and causes of tooth 

loss in adults.1 It is the world’s 6th most prevalent oral disease, affected around 743 

million people worldwide. The prevalence was at 11.2% globally, and 15.0-20.0% of 

Asians.2 According to 8th Thailand national oral health survey (2017), the prevalence of 

periodontitis in Thai adults is 26%, and for the elderly, it is 36%. Periodontitis is a 

complex inflammatory disease that leads to the destruction of the supporting structures 

around the tooth, resulting in the loosening of the teeth and eventual tooth loss.3 This 

leads to decreased occlusal ability, digestive ability and effectively the patient’s quality 

of life. 

In addition to oral manifestations, previous studies found an association of 

chronic periodontitis with systemic diseases and conditions.4 The association between 

atherosclerotic vascular diseases (ASVD) and periodontitis has been established.5 Joint 

of European Federation of Periodontology and American Academy of Periodontology 

(EFP/AAP) Workshop on Periodontitis and Systemic Diseases reported that there is 

consistent and strong epidemiologic evidence that periodontitis increased risk for future 

CVD.6 Chronic periodontitis and diabetes mellitus have bidirectional relationships and 

it has also been reported that periodontitis and diabetes had significant direct and 

indirect effects mediated via each other on chronic kidney disease (CKD) incidence.7 

Relationships between periodontitis and other systemic disease, i.e., chronic obstructive 

pulmonary disease (COPD), rheumatoid arthritis (RA), Alzheimer's disease and erectile 

dysfunction, also have been reported.8 

Severe chronic periodontitis is characterized by loss in alveolar bone height. 

To be diagnosed, radiographs are required. Diagnosis of less severe periodontitis 

requires a dentist or dental hygienist to manually measure the distance between the 

cementoenamel junction and the base of the periodontal pocket for all present teeth. 
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Such measure is gold-standard, but time and resource-consuming in multiple numbers 

of cases, for instance screening a community. Such a scenario can be more efficiently 

addressed by the presence of a risk prediction system, removing the need for oral 

examinations. 

Risk scoring systems such as periodontal risk calculator (PRC)9, 10 and 

periodontal risk assessment (PRA)11 has been proposed by Page et al. and Lang et al. 

respectively. PRC scores the patient with a risk score between 1-5 (1 being low risk and 

5 being high) as well as a disease state score between 1-100. It uses 9 features to score, 

including the radiographic bone height. As seen in Figure 1.1., PRA categorizes the 

patient into three distinct classes, namely low risk individual, moderate risk individual 

and high-risk individual. While it uses 6 parameters to score, its parameters include 

clinical measurements such as presence of bleeding on probing and residual pockets. 

While the measures enable the process to be more objective, inclusion of clinical 

parameters restricts the applicability of the system without the presence of dental 

professionals.  

By excluding oral examinations, other parameters such as demographics 

and risk behaviors are used to assess the risk. Risk prediction models are typically 

developed by statistical modelling and commonly applied are multivariate logistic 

regression models. While logistic regression models are simple and efficient, they rely 

on proper selection of the features, which means feature engineering is vital for the 

model. A typical approach is to use a limited number of known risk factors and domain 

expert selected features. Supervised nature of the approach misses the opportunity to 

discover novel patterns, and limited model’s performance leads to be suboptimal. 

In recent years, machine learning emerges as an alternative for risk 

prediction. Machine learning algorithms can have features needed for prediction learned 

from the available dataset.12 Machine learning models can learn with specified outcomes 

(supervised) or without specified outcomes (unsupervised) as well. While unsupervised 

models can be applied to detect the patterns in the data, supervised machine learning 

can be applied for both classification and regression tasks. A branch of machine learning 

called deep learning models are feature learning models, consisting of multiple layers 

of features, obtained by composing simple but nonlinear modules that each transform 
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the feature at one layer (beginning from input layer) into a feature at a higher, slightly 

more abstract layer, resulting in improved prediction from data.13, 14 

Over traditional statistical modeling, machine learning models can also 

improve the performance by applying hyperparameter optimization. Different data 

patterns require different sets of parameters, to minimize the loss of the classification 

model. For example, support vector machines can perform on non-linear relationships 

by applying soft margins, by allowing misclassifications or using kernels to make the 

classes linearly separable. Hyperparameters of deep learning models, such as activation 

functions, can be tuned to work with either linear or non-linear relationship between 

independent and dependent variables. 

On the other hand, traditional statistical models have a descriptive model 

approach such as the relationship between the independent (age) and dependent 

(incidence of periodontitis) variables, hazard ratio of Cox regression and odd ratio of 

logistic regression. While this interpretability is preferable for clinical applications, 

machine learning models tend to have an algorithmic approach model, which performs 

better for prediction. High performance machine learning models such as deep learning 

and ensemble learning models are claimed to have “black box”, due to their lack of 

interpretability. Artificial neural networks have complex network with interconnected 

nodes or neurons, either passing information to another neuron or not due to being 

deactivated. Both algorithms, feed forward and backward propagations are going back 

and forth for all training samples to optimize the model for minimal loss. While these 

intricate connections and processes lead the model towards higher performance, the 

relationship between the input (age)  and the output (incidence of periodontitis) of the 

model can no longer be interpreted. For a pure diagnostical purposes, such a model 

might be less acceptable in a clinical environment. But by applying it in such a way that 

it can help screen the patients so that they can be informed to emphasize their effort on 

oral hygiene and dental visits, it can be more of a practical purpose. Our challenge here 

is to see if the predictive performance of machine learning models can be superior or 

desirable enough for the exchange with the interpretability of the model. 
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1.2. Research Question 
Do machine learning models have better predictive performance than 

statistical models in diagnosis of chronic periodontitis? 
 
 
1.3. Research Objectives 

The objectives of the study are - 
1. Develop statistical and machine learning predictive models on 

longitudinal data to diagnose severe chronic periodontitis. 
2. Compare the performance of the predictive models between statistical 

model and machine learning models on longitudinal data for diagnosis 
of severe chronic periodontitis. 

 
 
1.4 Expected Benefits 

By deploying a diagnostic model, the process of periodontitis screening in 
community, should be less time consuming. Longitudinal modelling allows the 
prediction of periodontitis incidence using large longitudinal datasets, such as electronic 
health records and surveys.  
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Figure 1.1. Periodontal Risk Assessment by Lang and Tonetti (2003)15 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1. Epidemiology of Periodontitis 

Periodontitis is the inflammation of periodontium, a disease involving the 

structure surrounding the tooth and it is considered one of the most common disease in 

humanity. From the 2009 and 2010 National Health and Nutrition Examination Survey 

(NHANES), over 47% of the U.S. adults who aged 30 years and older (64.7 million 

people), representing, had some form of periodontitis. And for adults 65 years and older, 

70.1% have periodontal disease.16 

While the bacterial plaque is considered to be the initiator of the condition, 

it always is present in the oral cavity as the dental plaque, in both healthy and 

compromised patients. It forms from the acquired pellicle, which is a layer of saliva 

mainly consisting of glycoprotein, and it forms shortly after tooth brushing or oral 

hygiene methods. It helps with the adhesion of the bacteria to the tooth and the mass of 

bacteria proliferates in the dental plaque, forming bacterial or microbial plaque. With 

insufficient or improper oral hygiene practices, the plaque builds up to become the tartar 

or calculus, which furthers help the adhesion of the bacterial plaque. 

Fortunately, with effective immune system, the periodontal diseases will not 

develop as long as the balance between the microbial and host response is maintained. 

This balance is broken either by the hyper-responsiveness or the high virulence of the 

bacteria, or by the decrease in host immune by systemic factors. Then the periodontium 

becomes inflamed and subsequent destruction of alveolar bone happens. But during the 

initial stages of the inflammation, the symptoms are less noticeable, so the process is 

encouraged by the patient’s negligence of oral hygiene. The disease progresses and the 

patient may suffer from gingival bleeding with little provocation, gum swelling, dull 

pain, gingival abscess, and tooth mobility. This leads to tooth loss, decreasing the 

occlusal ability, digestive ability and, effectively, the patient’s quality of life.17 
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2.2. Classification of Periodontitis 

Periodontitis is characterized by loss in alveolar bone height, so it is inferred 

the loss in attachment of junctional epithelium, which is the clinical attachment level. 

The severity of periodontitis is considered by the increasing measurement of clinical 

attachment level. Clinical attachment level is measured from the cementoenamel 

junction to the junction epithelium (base of the periodontal pocket). American Academy 

of Periodontology (1994) classifies chronic periodontitis as slight (1-2 mm), moderate 

(3-4 mm), or severe (≥ 5 mm).18 Although the AAP 1999 definition was widely accepted 

in clinical circumstances, it was not uniformly adopted by periodontal researches. 

According to a systematic review of a common definition for periodontitis7, 

while most of the studies relies on clinical examination, selected periodontal parameters 

are quite different. It was found that several parameters, such as clinical attachment 

level, periodontal pocket depth and bleeding on probing, are used separately or jointly 

to define periodontitis. Also, other measures, such as the cut-off points for the 

measurements and, the distribution of periodontally compromised teeth, are lacking in 

uniformity. 

During the literature review, it is observed that Centers for Disease Control 

and Prevention - American Academy of Periodontology (CDC-AAP) classification for 

periodontitis is mostly applied, as seen in Figure 2.1. However, it is also observed that 

self-determined criteria to classify periodontitis are applied nearly as much, signifying 

the lack of uniformity in defining the condition. While World Health Organization’s 

CPI-TN (Community Periodontal Index for Treatment Needs) is applied as well, it 

should be noticed that the index tries to identify the level of treatment needed for the 

patient explicitly instead of diagnosing the condition. Consensus report of 5th European 

Workshop in Periodontology proposes a new criterion for identifying periodontitis by 

staging. The staging procedure takes three criteria in consideration: greatest decrease in 

clinical attachment level, radiographic bone loss and tooth loss due to periodontitis. 

Due to lack of uniformity, the Centre for Disease Control and Prevention 

and American Academy of Periodontology proposed a new standard case definitions for 

surveillance of periodontitis and the criteria are stated in Table 2.1.16, 19 Several 

literatures have used CDC-AAP definitions.20-25 
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2.3. Risk Factors of Periodontitis 

Periodontitis is of complex etiological causes. While bacterial plaque is 

considered to be the initiator of the condition, by acting as the biofilm, there are other 

local factors such as mal-occlusion, dental restorations and oral prostheses, that 

encourage the formation of dental plaque. Also other systematic factors, such as mal-

nutrition and poorly controlled diabetes mellitus increase one’s susceptibility to 

periodontal disease. Oral habits such as smoking and betel quid chewing habits can 

increase one’s risk while oral hygiene habits such as frequency of tooth brushing22, 24-28 

and flossing24, 29 removes the dental plaque so reducing the risk of microbial plaque 

maturing. Smoking is a well-established risk factor22-36 and it is also reported that 

severity of radiographical bone loss is enhanced by betel/pan chewing.27, 29, 32, 37, 38 The 

number of teeth24, 25 and sometimes decayed, missing, and filled teeth index (DMFT)22, 

25 are also included as oral risk factors for chronic periodontitis. As shown in Figure. 

2.2, other factors such as tooth mobility, number of teeth with bleeding, and number of 

teeth which are mostly applied oral risk factors. Demographic risk factors such as 

smoking, age and sex appear in Figure. 2.3. 

Demographically, it is reported that the prevalence of periodontitis increases 

as one grows older.21-24, 26-28, 32, 33, 35, 36, 39 Also, periodontitis has a higher prevalence in 

men (~57%) compared to women (~39%).21-27, 32, 33, 35, 36, 40 However the paper also 

advices that different socioeconomic and behavioral factors between genders might 

have influenced, rather than the gender bias.40 Income22, 24-26 and education levels21-25, 

33, 35-37 are common features in predictive models. Also, family size25, 27, body mass 

index25, 26, 41, drinking habit21, 27, 34, diabetes mellitus24, 31, 32, 34-36 and hypertension25, 32, 

42 are also suggested.  

Several literatures study association between a limited number of potential 

biomarkers and chronic periodontitis, as shown in Figure 2.4. As stated before, 

periodontitis is initiated by the microbial dental plaque and the host susceptibility for it. 

The presence of sub-gingival pathogens induces local inflammatory response and large 

number of leukocytes are exuded and migrated as the first line of defense. It is observed 

that the number of white blood cells (WBC) increases in patients with chronic 

periodontitis and the increased number of neutrophils and lymphocytes are statistically 
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significant.43 Immunoglobulin G, part of humoral immunity, is also observed to be 

increased. Immunoglobulin G3 serum levels discriminate well between chronic 

periodontitis and healthy patients.44 While there is local inflammation at site of 

periodontitis, it is also studied that patients with chronic periodontitis have low grade 

systemic inflammation. Interleukin-6 is produced at site of inflammation and considered 

to be dumped into systemic circulation, increasing interleukin-6 levels. Interleukin-6 

also induces hepatic synthesis of C-reactive protein. It is observed that there is 

association of chronic periodontitis with high Interleukin-6  levels and high C-reactive 

protein, measured by high sensitivity C-reactive protein test45. Inflammation also 

adversely affects the lipoprotein levels, being observed the lower high-density 

lipoproteins levels (HDL) and higher low-density lipoproteins levels (LDL) in patients 

with chronic periodontitis.43 

 

 

2.4. Predictive modelling of periodontitis 

As seen in Figure. 2.5 and Figure. 2.6, it is observed that logistic regression 

is mostly applied for predictive modelling. However, application of different criteria for 

labelling samples result in different performance of the same model23, 25. Also, different 

performance metrics applied by each study reduce comparability, as shown in Table 2.2. 

Studies on prediction models try to compare between the performance 

between including different combination of features (demographical features, risk 

behavior data, oral features). For self-reportable models, questionnaires are used to 

collect the oral features instead of clinical examination. Eke et al. observes that 

including both demographic and oral features in the model performs better than only 

including demographic features. In addition to other features, Verhulst et al. also applies 

biomarker data of the saliva, resulting in higher and more balanced performance of the 

model among the reviewed models. However, while it performs better, identifying 

biomarkers from saliva such as protease and chitinase also consume resources. We need 

to balance our models between predictive power and required resource. 

Nevertheless, the common goal of the majority of the studies is to diagnose 

periodontitis without clinical examination. By applying only self-reportable features 

such as demographics and risk behaviors, the resulted model can be applied with a rapid 
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non-invasive screening tool. With our study, we aim to improve model performance 

with machine learning models and hyperparameter optimizations. 

 

 

2.5. Predictive model development 
2.5.1. Feature Selection 

Feature selection, also known as variable selection, is a procedure of 

nominating a subset of relevant independent variables to apply as predictors in model 

construction. While several deep learning procedures are representative learning, where 

the irrelevant features are weighted less or none at all, the process reduces the dimension 

of the training dataset, subsequently computational resource and the training time 

requirements. It also reduces the risk of the model overfitting on the training dataset, 

allowing the models to have relatively low bias and high variance. Feature selection 

methods can be grouped into three categories: 

1. Filter methods 

2. Wrapper methods and 

3. Embedded methods. 

Filter methods select the variables regardless of the model, by testing for 

difference in variance or correlation/association between independent (age) and 

dependent (chronic periodontitis) variables. The selected variables are used as the 

predictors for the classification or regression model. These methods are considered to 

be robust against overfitting and have less computational time. However, since they 

consider one-to-one relationships, such methods tend to select redundant variables 

(weight and body mass index) by not accounting for interaction between variables. Chi-

square tests and analysis of variance (ANOVA) tests are considered as filter methods. 

Unlike filter methods, wrapper methods evaluate subsets of variables, 

allowing to detect the possible interactions. It has greedy approach, evaluating all 

possible combination of variables. Applying to a specific model, candidate variables are 

added one by one, or applied as a whole and removed one by one. On a chosen model 

fit criterion such as Akaike information criterion (AIC), the variables are chosen if their 

presence as predictor improves the fit of the model. However, the computational cost is 

high on datasets with many features. Also, this procedure requires a model to be tested 
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on the fit for the dataset, therefore it is considered to have high chance of overfitting. 

Wrapper methods include stepwise regression methods such as forward selection and 

backward elimination. 

Embedded methods are proposed to combine the advantages of two prior 

methods. These methods are included as part of a model training procedure. They 

calculate the importance of a feature in making prediction. Tree-based methods report 

the contributions of each feature while regularization methods such as LASSO and 

Ridge decreases the coefficients of the less relevant variables to reduce its contribution 

towards final prediction. Like filter methods, these methods are considered to be robust 

against overfitting, while they also consider the interaction between the features like 

wrapper methods. 

Stepwise selection 

Part of filter methods of feature selection, stepwise selection can be applied 

in different ways, such as forward selection or backward elimination. In forward 

selection, the initial model is built with one variable, adding one by one. Using a model 

fit criterion, the variable is selected if its inclusion gives the most statistically significant 

improvement of the fit. After selection of second variable, all the remaining variables 

are tested again as the candidate for the third variable. This procedure is repeated until 

including more variables do not improve the model. 

In backward elimination, the initial model is built with all available 

variables, removing one after another. Here, the variable is eliminated if the absence of 

it gives the most statistically insignificant deterioration of the fit. This procedure 

repeated until removing more variables results in statistically significant deterioration. 

Combination of both prior methods, called bidirectional elimination, tests for both 

including and excluding the variable at each step. 

Other than testing for fit of the model, p-value is the common statistical 

entry and exit criteria of the variables. Multivariate regression models are applied as the 

model and the threshold is set for including or excluding the variable. Unlike 

conventional statistically significant value of 0.05, 0.15 is the typical value used and the 

variables with less p-value are included in the model for current step. Similarly, 

variables with p-value more than 0.15 are excluded. 
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2.5.2. Feature Engineering 

For majority of machine learning models, both the inputs and outputs of the 

model are required to be numerical variables. While discrete and continuous variables 

can be included as it is, data manipulation is necessary for categorical data as in Table 

2.3 and 2.4. Binary classes, such as gender, are encoded into 0 and 1.  

For multiclass variables, it is dependent on the type of categorical variable. 

For ordinal categorical variables, such as education level, socioeconomic level and 

income level, the variables are encoded by ordinal encoding, which transforms non-

numerical labels into numerical labels while retaining the ordinal nature of the variable. 

For example, the raw data in Table 2.2. has “Education level” as a feature. So, during 

data preparation in Table 2.3., the categories are encoded as Primary School” as 0, 

“Middle School” as 1, “High School” as 2 and “bachelor’s degree” as 3.  

But nominal variables do not have ordinal nature to it so, variables, such as 

occupation, need to be encoded using one-hot-encoding. For instance, the variable 

“occupation” has classes “programmer”, “doctor” and “engineer”. When the variable 

“occupation” is one hot encoded, three new variables are created for each separate class. 

For a “doctor”, the value for the variable “doctor” is 1 while the values for 

“programmer” and “engineer” are zeros. For target variables, it is necessary to encode 

depending on the type of models. For example, support vector machine requires the 

target values to be -1 and 1, while neural networks require 0 and 1. However, in our 

study, we apply support vector regressor within the mixed effects machine learning 

model instead of support vector classifier, therefore all targets are transformed as 0 and 

1, and logistic transformation is applied afterwards. 

 

2.5.3. Logistic Regression 

Data Transformation  

Logistic Regression requires both the inputs and outputs of the model to be 

numerical. So, for categorical data, feature transformation is required. For target 

variables, it is necessary to label the target variables’ classes as [1] for positive class and 

[0] for negative class. 
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Methodology 

Logistic regression is a statistical model, which applies logistic function 

(sigmoid function) to determine the binary outcome of the sample in its basic form, 

although there are other complex adaptations of logistic regression for other purposes. 

In contrast to linear regression where dependent variable is linearly related to 

independent variable, the log-odds (logarithm of odds) of event is a linear combination 

of independent variables in logistic regression. It can be univariate (single predictor) or 

multivariate (multiple predictors). Depending on the number of outputs, it can be 

binomial (binary outcome), multinomial (more than two possible outcomes) or ordinal 

(dependent variables have ordinal nature). Logistic regression is usually the model of 

choice for stepwise feature selection. 

 

2.5.4. Mixed effects Logistic Regression 

For training of a classification model, i.i.d assumption (independent, 

identically distributed) for the training dataset is made. Therefore, vanilla logistic 

regression cannot be applied for longitudinal datasets, where correlation between 

repeated measurements violates i.i.d. Mixed effect models are applied in such settings 

by considering as levels or hierarchy. 

Mixed effect models, also called multilevel models, are statistical models 

considering both fixed and random effects. In biostatistical sense, fixed effects are 

population-average and random effects are subject-specific effects (also called latent 

variables, which are assumed to be unknown). Mixed effects models extend the 

capability of the regression model, by recognizing that individuals in population are 

heterogenous. In mixed effects models, each subject is allowed to have their own 

subject-specific intercept and/or slope. Mixed effects logistic regression, like vanilla 

models, can also be applied for classification tasks. 

𝑦!" = 𝑋!"𝑏 + 𝑍!"𝑢 

- where 

𝑦 = target variable (logit) 

𝑋 = fixed effects feature 

𝑏 = coefficient of feature X 

𝑍𝑢 = random effects variable describing latent variables 
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𝑖 = cluster 

𝑗 = observation of 𝑖th cluster 

 

2.5.5. Support Vector Machine 

Data Transformation  

Support vector machines requires both the inputs and outputs of the model 

to be numerical. So, for categorical data, feature transformation is required. For target 

variables, it is necessary to label the target variables’ classes as [1] for positive class and 

[-1] for negative class. 

Methodology 

Support vector machine is a type of supervised machine learning algorithm. 

Support vector machines work exclusively on binary classifications. While the two 

classes are separated with a decision boundary, such boundary can be drawn in 

thousands of ways as a few shown in Figure. 2.11. The function of support vector 

machine is to search the best separating line, called the hyperplane, which leaves the 

maximum margin width from both classes. Support vector machine accomplishes this 

by considering only the support vectors, which are on the margin of the hyperplane, 

instead of considering all the data points, as shown in Figure 2.12. Support vectors are 

the data points that are closest to the other class in hard margins. For the output of the 

model, the hyperplane is considered zero and the support vectors are considered [1] and 

[-1]. Theoretically, a data point can be on the zero plane, which makes it neither in the 

positive nor the negative class. Practically, only negative values are considered negative 

[-1] class and other values such as zero and the positive values are considered positive 

[1] class. Support vector machine performs optimally in linearly separable data.  

However, real-life data are rarely linearly separable, due to outliers or noise 

data. As seen in Figure 2.13., soft margins are applied by considering other data points 

as support vectors allowing some data points to be on the other side of the hyperplane ( 

misclassified ) instead of using a hard margin which has low variance and high bias by 

overfitting to the training data. Alternatively, using kernel functions increases the 

dimension of the dataset. For example, in Figure. 2.14., the two-dimensional dataset 

becomes three dimensions, which allows better separability by linear decision plane. 
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And, since support vector machine separates using a linear plane, they are 

limited for binary classifications. However, several workarounds such as one-vs-all 

approach enables it to be applicable for multiclass classifications as well. 

 

2.5.6. Support Vector Regression 

Methodology 

Support vector regression is an adaptation of support vector machine 

applying the concept of linear regressions. In ordinary least squared regression, best 

fitted regression line is created from the data by minimizing the summation of squared 

error as shown in Figure. 2.15.  

𝑦′! = 𝑤𝑥! + 𝑏 

- where 

𝑦′! = regressed value for data point 𝑖 

𝑥! = feature of data point 𝑖 

𝑤 = weight or coefficient of feature 𝑥 

𝑏 = bias of the regression line 

𝑒𝑟𝑟𝑜𝑟! = 𝑦! − 𝑦′! 

𝑚𝑖𝑛3‖𝑒𝑟𝑟𝑜𝑟!‖#
$

!%&

 

- where 

𝑦! = actual value of data point 𝑖 

𝑒𝑟𝑟𝑜𝑟! = error of the regressor for data point 𝑖 

In real life, the presence of noise data or outliers affect the regression line 

and by extension the error rate. In support vector regression46, support vectors are 

determined to set the margin as in conventional support vector machine. Error is 

calculated only from the data points inside the margin therefore ignoring the outliers. 

The width of the margin must be controlled since a margin too wide will consider all 

data points with the model becoming influenced by noise and overfitted. On the other 

hand, small margin would not be able to learn from the data with the regression line 

becoming underfitted. 

Therefore, for the support vector regression model, we would like to 

consider as much data points as we can while not becoming overfitted. As in Figure 



Htun Teza  Literature Review / 16 

 

2.16., the regression line (the hyperplane) and the margins are parallel, so the 

perpendicular distance between two parallel lines is widened as much as possible.  

𝑑 = 	
|𝑦' − 𝑦|
√𝑤# + 1

 

- where 

𝑑 = perpendicular distance between the hyperplane and the margins 

𝑦 = actual value of the support vector on the margin 

𝑦' = regressed value for the support vector 

 

Since the perpendicular distance (𝑑) is inversely proportional to weight (𝑤), 

𝑤 is reduced instead of error as in linear regression. However, as 𝑑 increases, more data 

points will be considered so risking overfitting. Therefore, the error for each data point 

is constrained under the amount of error we are willing to accept called epsilon (𝜖) and 

it is a hyperparameter.  

𝑚𝑖𝑛3‖𝑤‖# 

‖𝑒𝑟𝑟𝑜𝑟!‖ ≤ 𝜖 

Applying the concept of margins from conventional support vector 

machines, soft margins are applied in regression by considering some more data points 

outside of the acceptable error (𝜖) as shown in Figure 2.17. By increasing the constraint, 

we let the model consider more data points called slacks. But since we do not want the 

model to consider too much data points, we penalize the model based on how much 

slacks we are giving ourselves. 

𝑚𝑖𝑛3‖𝑤‖# + 𝐶
1
𝑛3

‖𝜉!‖
$

!%&

 

‖𝑒𝑟𝑟𝑜𝑟!‖ ≤ 𝜖 + ‖𝜉!‖ 

- where 

𝜉 = the amount of slack allowed for the model 

And 𝐶 is also a hyperparameter how much we want to penalize for allowing 

slacks. Because we penalize only on the data points outside the epsilon zone, it is also 

known as epsilon insensitive loss. We cannot control how much slacks (may be too few 

or too many) but the amount of error we are willing to accept is set. This type of support 
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vector regression is called Epsilon regression and it is shown in Figure. 2.16. In another 

type of support vector regression called nu-regression47, epsilon (𝜖) is not a 

hyperparameter but part of the penalty term. Here, 𝜈 (nu) is a hyperparameter which 

determines control the amount of slacks left outside the margin and the value lies 

between 0 and 1. Since increasing 𝜖 reduce 𝜉 and the penalty on 𝜖 is reduced by 𝜈 value, 

𝜖 is increased rather than 𝜉 resulting in less slacks. 

𝑚𝑖𝑛3‖𝑤‖# + 𝐶(𝜈𝜖 +
1
𝑛3

‖𝜉!‖
$

!%&

) 

 

2.5.7. Mixed Effects Machine Learning 

As stated before, linear mixed models consider random effects different 

between each cluster. 

𝑦 = 𝑋𝑏 + 𝑍𝑢 

𝑋𝑏 is the population average value and it accounts for within-cluster variation. 𝑍𝑢 is the 

subject-specific value and it accounts for between-cluster variation. On the other hand, 

non-linear mixed models estimate the relationship between features and the target 

variable as non-linear, and machine learning models can be applied for such 

relationship.  

𝑦!" = 𝑓(𝑋!") + 𝑍!"𝑢 

- where 

𝑓(. ) = non-linear function  

 

Classical machine learning classification and regression algorithms do not 

generate high quality models on correlated data so mixed effects machine learning 

models48, 49 are developed as an extension of traditional machine learning methods. They 

are longitudinal/clustered supervised machine learning, as that of learning the two 

components of a non-linear mixed model separately through an iterative expectation 

maximization-like algorithm, in which the fixed-effect component is estimated using 

machine learning methods and the random-effect component is estimated using linear 

mixed model. By including random effects within the model, Mixed effects machine 

learning is resistant to variabilities introduced by correlated data. Mixed effects machine 
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learning can take advantage of dependencies between the observations to generate more 

robust and accurate models. It is to be noted that machine learning model applied here 

should be a regression model. 

Expectation-Maximization Algorithm 

It is an iterative algorithm as shown I Figure 2.18. 

Step 1. Given a set of incomplete data, consider a set of starting parameters. 

Step 2. Expectation step (E — step): Using the observed available data of the dataset, 

estimate (guess) the values of the missing data. 

Step 3. Maximization step (M — step): Complete data generated after the expectation 

(E) step is used in order to update the parameters. 

Step 4. Repeat step 2 and step 3 until convergence. 

Regression 

Initial random effects are set as zero. Since we consider the target value to 

be the summation of fixed and random effects, fixed effects are calculated by subtracting 

random effects from the target and they are trained as the modified target value for the 

machine learning regressor. After training the machine learning model, the model is 

used to predict the value for each observation. The predicted values are subtracted from 

the target and the residuals are estimated to be the random effects used to train the linear 

mixed model. By the trained linear mixed model, new random effects are re-estimated. 

The stopping criterion is set and until it is met, the fixed effects are calculated again by 

redacting random effects. Machine learning model is retrained, and the loop is continued 

as shown in Figure 2.19. 

Stopping criteria is set in terms of maximum iterations and absolute change 

in likelihood of the mixed model. Recommended setting for maximum iterations value 

is not stated in the literature. Convergence in term of likelihood is set similar to 

statistical models as well where the iterations are proceeded until the change of the 

estimated parameter vector is negligible with respect to the accuracy of the estimates.50 

In STATA, tolerance for change is 1e-6 and maximum iteration is 300. In R(lme4), 

tolerance for change is 1e-6 and maximum iteration is 50. 

When the model is applied, both the trained machine learning regressor and 

mixed model are used to predict the values and they are summed. For samples not in the 
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training data, the random effects are unknown therefore zero is used, which means they 

are predicted in terms of fixed effects only as shown in Figure 2.20. 

Classification 

For classification, the target value must be transformed into numerical or 

logit value manually since we are applying two regressor models. All initial processes 

are similar with regression framework, until the convergence criteria are met. This is 

considered as the inner loop or micro iteration. After the inner loop, fixed effects are 

predicted by machine learning regressor and random effects are estimated by linear 

mixed model. Both effects are summed to create the logit value for each observation. 

The logit value is transformed into probability and the probabilities are dichotomized 

using a decision threshold. The resultant classes are considered as the new target class.   

The new targets are transformed into logit values again, and previously 

estimated random effects are removed from this to create new fixed effects. Machine 

learning regressor is trained again with updated fixed effects and the inner loop is 

restarted. This step is called the outer loop or macro iteration. The inner loop is repeated 

until convergence criteria, and it leads to the outer loop again. The outer loop will have 

its own convergence criteria, and both will be repeated until both loops converge . 

Convergence criteria for inner loop are the same as the regression 

framework. For the outer loop, there is no recommendation for maximum number of 

iterations as well so it must be set based on the computation resource and time resource 

availability. As shown in Figure 2.21. and 2.22., maximum of the absolute change in 

logit value is also monitored and the loop is continued as long as the value is more than 

the tolerance. During the application, the output of the model is calculated the same as 

before, but it is the logit value, so it is transformed into probability and dichotomized. 

 

2.5.8. Artificial Neural Networks 

Data Transformation 

Artificial neural network requires both the inputs and outputs of the model 

to be numerical. So, for categorical data, feature transformation is necessary. For target 

variables, it is necessary to label the target variables’ classes as [1] for positive class and 

[0] for negative class. 
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However, labeling of the target variable is also different based on the 

function of the model and the activation functions applied. For binary classification with 

sigmoid function, the samples are labeled 0 or 1. But SoftMax function requires separate 

target variables for each class, so the samples are labeled as [0,1] or [1,0]. In multi-class 

classifications where classes are mutually exclusive, it is necessary for the target to be 

one-hot-encoded such as [1,0,0], [0,1,0] and [0,0,1]. However, multi-label 

classifications where one sample can have multiple labels, targets are labeled as [1,1,1], 

[0,1,1], [1,0,1], [1,1,0], [0,0,1], [0,1,0], [1,0,0] and [0,0,0].  

Methodology 

Neural networks are loosely modeled after human brain, consisting of 

interconnected simple processing units, which learns from experience by modifying the 

connections. Neural networks are called deep learning as well, because of the presence 

of multiple hidden layers. While a neural network consists of multiple layers, the 

architecture can be categorized into three groups, input layer, hidden layers, and output 

layer. 

The number of nodes(neurons) in the input layer are equal to all the features 

of the dataset or the features we selected for the prediction of the target variable. Neural 

networks require numerical values as input, so encoding for categorical variables is 

necessary. For ordinal variables, ordinal encoding is used, and one-hot-encoding is used 

for nominal variables. 

Hidden layer can be single or multiple, and these layers are where major 

computations of the neural network happens. As in Figure 2.23., a neuron in hidden 

layer uses the concept of perceptron, which is assigning weights to each input of the 

node. However, the weights of the  inputs are not known at the beginning of the model, 

so random weights to the inputs and bias to the layers are assigned. The combination of 

weights, inputs and bias creates the linear relationship between the inputs and output of 

the node, an activation function is used to introduce non-linearity. For example, as 

shown in Figure 2.24., sigmoid function compresses the output value [ -∞, ∞] (x-axis) 

to [ 0, 1] (y-axis), and the output value is passed to the next layer, which can be either 

another hidden layer or the output layer.  

The number of neurons in the output layer differs based on the function of 

the model and the activation functions applied. For regression, there is single neuron, 
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and no activation function is required. For classification, it can also be single neuron 

(single output) if the classification is binary, and the activation function is sigmoid. 

However, for multiclass or multilabel classifications and other activation functions such 

as SoftMax, multiple nodes (multiple output) in output layer are necessary. This process 

of passing from input layer to hidden layers to output layer is called “feed-forward” as 

seen in Figure 2.25. (Left). 

However, since our initial weights are assigned at random, chances are the 

output value of the model is different to real value as it is in Figure 2.25. (Right). So, 

another process called “backward propagation” is used to correct this, by comparing the 

predicted value with the real value. The loss of this prediction is calculated, and the 

weights of the nodes are updated based on the nodes’ responsibility for the loss. The 

weights are increased or decreased to have the prediction closer to the ground value. 

This process of feed-forward, back-propagation is repeated for all samples in the dataset. 

During the weight adjustment, some nodes get their weights changed into 

zero, which means the node will no longer contribute to the output. This is called 

“deactivated nodes”, and this allows the neural network to be applied without feature 

selection. Also, one of the biggest advantages of artificial neural networks is ability to 

model non-linear and complex relationship. However, neural networks are extremely 

complex and uninterpretable, so they are said to have a “Black box” as well. 

 

2.5.9. Recurrent Neural Networks 

Data Transformation 

Recurrent neural networks, similar to artificial neural networks, requires 

both the inputs and outputs of the model to be numerical. For target variables, it is 

necessary to label the target variables’ classes as [1] for positive class and [0] for 

negative class, similar to artificial neural networks. 

Also, unique for recurrent neural networks, the number of outputs can be as 

much as the number of time steps (observations) depending on the architecture. For 

multivariate models, the architecture can be many-to-one as well as many-to-many, as 

seen in Figure. 2.28. 
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Methodology 

Recurrent neural networks are considered part of the representative learning 

algorithms, specializing in temporal sequence. Recurrent networks remember the past 

and its decisions are influenced by what it learnt from the past. Therefore, the outputs 

of the model are not only influenced by the weights applied to the input like traditional 

neural networks, but also the hidden state vector, representing the context of prior input 

and/or output. The major application of recurrent neural networks is natural language 

processing and voice recognition, where the previous context is necessary. 

As in Figure. 2.29., the hidden state vector is initialized randomly and 

passed it into the activation function with the input. The activation is typically tanh 

function, which compress the output value [ -∞, ∞] (x-axis) to [ -1, 1] (y-axis). The 

output of the function is passed to another activation function, sigmoid or SoftMax 

depending on the model, for the output of the observation. However, the same output of 

the tanh function also passes to the next tanh function together with the next observation 

of the input and it is repeated for all the observations. Therefore, the context of the 

previous observations is stored and passed along the time steps. Recurrent neural 

networks are unique in a way that the same weight is applied to all the inputs of the 

same parameter, but the different outcomes at different observations are resulted by the 

different hidden state vectors resulting from previous outcomes. Recurrent neural 

networks are trained with one sample at a time. Of the same sample, RNN cells train 

from one time-step to another. The output of the model is compared with the ground 

value, and the loss is calculated using loss function. The weights of the model are 

readjusted using backward propagation and gradient descent. 

Usually, the loss value is decreased by using gradient descent. Backward 

propagation finds the derivatives of the networks by moving layer by layer from final 

layer. However, since activation functions such as sigmoid and tanh compress the output 

value, the gradient decreases exponentially as we propagate backwards towards the 

initial layers. Small gradient means the weights will not be updated as effectively by 

each training sessions. But the initial layers are important to recognize the core elements 

of the input data, and this ultimately leads to inaccuracy of the model. Such problem is 

susceptible by deeper neural networks (more layers), and in recurrent neural networks 
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solve this by applying more complex architecture, such as long short-term memory 

units.   

 

2.6. Performance Metrics 

Performance metrics of the classification models are based on true positive, 

false positive, true negative and false negative, such as AUC (Area under the ROC 

(receiver operating characteristic) Curve) of the classifier. Accuracy is a measure of how 

well a binary classifier correctly identifies or excludes a condition. The value is the ratio 

of correctly identified patients (true positive and true negative) to all patients examined 

by the model.  

For medical applications, sensitivity and specificity are also the major 

metrics. Sensitivity is the proportion of actual positive patients (severe chronic 

periodontitis) to all positive patients while specificity is the proportion of actual negative 

patients (none or non-severe chronic periodontitis) to all negative patients. Some applies 

a specified threshold to be considered a good model such as addition of sensitivity and 

specificity more than 120 or 130. However, since sensitivity and specificity measure 

separate proportions of the results, such addition might under- or over-estimate the 

performance of the model.  

Likelihood ratio is used to assess the value of performing a diagnostic test. 

It is the ratio of the probability of a person who has the disease testing positive to the 

probability of a person who does not have the disease testing positive. Positive 

predictive value (PPV) is the proportion of actual positive patients (severe chronic 

periodontitis) to predicted-as-positive patients while negative predictive value (NPV) is 

the proportion of actual negative patients (none or non-severe chronic periodontitis) to 

predicted-as-negative patients. PPV is also known as precision. For medical application 

such as screening, it is preferable to have the model to predict more false positives rather 

than more false negatives. Since these metrics are trade-offs between corresponding 

metric with variable thresholds, less specificity is more acceptable than less sensitivity 

and less PPV is more acceptable than less NPV. 

Receiver operating characteristic (ROC) curve is a graphical plot, 

illustrating the diagnostic ability of a binary classifier. It is created by plotting true 

positive rate against false positive rate at various threshold settings. ROC curves are 
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used to compare and evaluate different binary classifiers or classification models. Area 

under ROC curve (AUC), and concordance statistics (C-statistics) measures the 

discrimination ability of the model, and it is a measure of goodness of fit for binary 

classification models. A value of 0.5 means that the model is no better than predicting 

an outcome than random chance so, model with C-statistic value under 0.5 is considered 

to be a very poor model. 

 
 
2.7. Conceptual Framework   
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Table 2.1. Centre for Disease Control and Prevention - American Academy of 

Periodontology (CDC-AAP) classification 

Case Definition 

No periodontitis No evidence of mild, moderate, or severe periodontitis 

Mild periodontitis ≥2 interproximal sites with clinical attachment level  ≥3 

mm, and ≥2 interproximal sites with periodontal pocket 

depth ≥4 mm (not on same tooth)  

or one site with periodontal pocket depth ≥5 mm 

Moderate periodontitis ≥2 interproximal sites with clinical attachment level  ≥4 mm 

(not on same tooth),  

or ≥2 interproximal sites with periodontal pocket depth ≥5 

mm (not on same tooth) 

Severe periodontitis ≥2 interproximal sites with clinical attachment level  ≥6 mm 

(not on same tooth) and ≥1 interproximal site with 

periodontal pocket depth ≥5 mm 
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Table 2.2. Performance of current predictive models 

Paper Best 
performing 
model 

Performance Metrics 

Sens. Spec. Acc. Prec. AUC PPV NPV Corr. 
Coef. 

MSE 

Leite et al. 25 LR 67.57 67.50 -- -- 0.670 -- -- -- -- 

Cyrino et al. 24 LR 54.4 94.3 -- -- 0.833 -- -- -- -- 

Thakur et al. 31 ANN -- -- -- -- -- -- -- 0.8207
2 

0.0799
78 

Shankarapillai 
et al. 32 

ANN -- -- -- -- -- -- -- 0.9780
9 

0.1328
1 

Zhan et al. 23 LR 80.0 72.7 -- -- 0.830 74.6 78.5 -- -- 

Özden et al. 33 SVM -- -- -- 0.98 -- -- -- -- -- 

Özden et al. 33 ANN -- -- -- -- -- -- -- 0.4061 -- 

Özden et al. 33 DT -- -- -- 0.98 -- -- -- -- -- 

Lai et al. 26 LR 63.5 68.6 65.8 -- 0.712 61.6 70.3 -- -- 

Javali et al.   27 LR -- -- 61 -- 0.7509 -- -- -- -- 

Eke et al. 22 LR 93.5 29.2 -- -- 0.79 -- -- -- -- 

Wu et al. 21 LR -- -- -- -- 0.93 -- -- -- -- 

Verhulst et al. 36 LR 80 88 -- -- 0.91 93 69 -- -- 

Abbreviations – 
Acc. = Accuracy 
AUC = Area under receiver operating characteristic (ROC) curve 
ANN = Artificial neural networks 
Corr. Coef. = Correlation coefficient 
DT = Decision tree 
LR = Logistic regression 
MSE = Mean squared error 
NPV = Negative predictive value 
PPV = Positive predictive value 
Prec. = Precision 
Sens. = Sensitivity 
Sens. + Spec. = Sensitivity + Specificity 
Spec. = Specificity 
SVM = Support vector machine 

 
Table 2.3 Example of raw data with 2 features and 2 Classes  

Age Education Level Occupation Label 
35 Primary School Programmer Severe Chronic Periodontitis 
25 Bachelor’s degree Doctor None or non-severe C.P 
21 Middle School Doctor None or non-severe C.P 
30 Middle School Programmer Severe Chronic Periodontitis 
29 High School Doctor Severe Chronic Periodontitis 
22 High School Engineer None or non-severe C.P 
22 High School Doctor None or non-severe C.P 
29 Bachelor’s degree Engineer None or non-severe C.P 
33 High School Engineer Severe Chronic Periodontitis 
29 High School Programmer Severe Chronic Periodontitis 
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Table 2.4. Example of transformed data with 2 features and 2 Classes 
Age Education 

Level 
(Ordinal) 

Education Occupation Occupation_ 
doctor 

Occupation_ 
engineer 

Occupation_ 
programmer 

Label Class 

 Ordinal 
Categorical 
variable 

Ordinal 
Encoding 

Nominal 
Categorical 
variable 

One Hot Encoding Binary 
Categorical 
Variable 

Binary 
Encoding 

35 Primary 
School 

0 Programmer 0 0 1 Periodontitis 1 

25 Bachelor’s 
degree 

3 Doctor 1 0 0 Healthy 0 

21 Middle 
School 

1 Doctor 1 0 0 Healthy 0 

30 Middle 
School 

1 Programmer 0 0 1 Periodontitis 1 

29 High 
School 

2 Doctor 1 0 0 Periodontitis 1 

22 High 
School 

2 Engineer 0 1 0 Healthy 0 

22 High 
School 

2 Doctor 1 0 0 Healthy 0 

29 Bachelor’s 
degree 

3 Engineer 0 1 0 Healthy 0 

33 High 
School 

2 Engineer 0 1 0 Periodontitis 1 

29 High 
School 

2 Programmer 0 0 1 Periodontitis 1 
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Figure 2.1, Distribution of labeling criteria in literature review (Some papers apply 

multiple criteria and all criteria are counted) 

 
 
Figure 2.2. Oral Risk Factors applied in previous literatures and predictive models  
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Figure 2.3. Demographic and Behavioral risk Factors applied in previous literatures and 

predictive models 

 
 
Figure 2.4. Laboratorial features and biomarkers applied in previous literatures and 

predictive models 
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Figure 2.5. Number of papers in literature review, applying a particular model (Some 

papers apply multiple models, and each type is only counted once) 

 
 
Figure 2.6. Distribution of models in literature review ( Some papers apply multiple 

models, and all models are counted ) 
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Figure 2.7. Flow chart for Mixed Effects Logistic Regression – Training Model 

Generation 

 
 
Figure 2.8. Block Diagram for Mixed Effects Logistic Regression – Testing and Target 

Transformation 
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Figure 2.9. Flow chart for Mixed Effects Support Vector Machine – Training Model 

Generation 

 
 
Figure 2.10. Block Diagram for Mixed Effects Support Vector Machine – Testing and 

Target Transformation 
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Figure 2.11. A few possible decision boundary (hyperplanes) for the dataset 

 
 

Figure 2.12. Optimal decision boundary (hyperplane) with maximum margin 
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Figure 2.13. Soft margins allow misclassified data points. ( The hyperplane is not 

optimal ) 

 
 

Figure 2.14. Kernel functions increase the dimension of the dataset, making it linearly 

separable.51 
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Figure 2.15. Ordinary Least Squared Regression 

 
Figure 2.16.  Support Vector Regression 
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Figure 2.17. Soft Margin with Slacks 

 
 
Figure 2.18. Expectation-Maximization Algorithm 
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Figure 2.19. Training Mixed Effects Machine Learning Regression 

 
 
Figure 2.20. Mixed Effects Machine Learning Regression Framework 
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Figure 2.21. Training Mixed Effects Machine Learning Classification 

 
 
Figure 2.22. Maximum of the absolute change in logit value 

 
 
Figure 2.23. Perceptron of a neural network 
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Figure 2.24. Sigmoid curve or logistic curve52 

 
 
Figure 2.25. Architecture of a neural network (Left) and Training error in feed 
forward network (Right) 
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Figure 2.26. Flow chart for Recurrent Neural Networks – Training Model Generation 

 
 
Figure 2.27. Block diagram for Recurrent Neural Networks – Testing and Target 
Transformation 

 



Fac. of Grad. Studies, Mahidol Univ.  M.Sc. (Data Science for Health Care) / 41 

 

 
Figure 2.28. Architectures of a recurrent neural network 

 
 
Figure 2.29. Illustration of a one-to-many recurrent neural network 
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Chapter III 

Methodology 

 

 

3.1. Study Setting and Design 

This study is a sub-cohort of prospective cohort study, namely Electric 

Generating Authority of Thailand (EGAT) cohort, by retrieving 5-years follow up 

period. Details about EGAT cohort are referenced53, but in short, EGAT project contains 

three parallel cohorts, also known as EGAT1, EGAT2 and EGAT3. Each cohort begin 

in 1985, 1998 and 2009 respectively. Each follow up is examined every 5 years, except 

for 12 years gap between 1st survey (1985) and 2nd survey (1997) of EGAT1. In the 3rd 

survey (2002) of EGAT1, periodontists collaborated with the cohort by including half-

mouth examination in the study. In 2003, 2nd survey of EGAT2, also known as EGAT 

2/2, started including full-mouth examination. EGAT 2/3 (2008) and 2/4 (2013) 

included more questionnaires about oral health and habits. 

This study was conducted applying EGAT2 cohort. The EGAT 2/3 and 2/4 

are used as the training and testing datasets. EGAT 2/3 and EGAT 2/4 are defined as 

the patient characteristics 5 years before and now respectively. All models predict the 

periodontal status of the samples into two classes (severe chronic periodontitis and none 

or non-severe chronic periodontitis). Rationale and setting details of the research 

objective are as follows. 

 

3.1.1. Objective 

Rationale 

We aim to diagnose the periodontal status of a subject without 

comprehensive periodontal probing. From literature reviews and expert opinions, the 

features that are correlated with periodontitis are selected, such as demographics, 

underlying diseases, risk behaviors, oral and laboratorial features. Selected features are 

applied for the models as predictors. Periodontal status is the target variable for all 

models. 
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Setting 

For longitudinal modelling, we will apply both EGAT 2/3 and EGAT 2/4 

dataset. The models to be applied are mixed effects logistic regression, recurrent neural 

networks, and mixed effects support vector machines The model performances are 

measured by six performance metrics: sensitivity, specificity, area under receiver 

operating curve, positive likelihood ratio, positive predictive value, and negative 

predictive value. The models are compared against each other. 

 

 

3.2 Study Subjects 
All available subjects in EGAT 2/3 are included unless they meet the 

exclusion criteria. For EGAT 2/4, only subjects followed up from EGAT 2/3 are 

included unless they meet the exclusion criteria. 

Some subjects were not present in ALL periodontal examinations due to (1) 

refusal to participate, (2) systemic conditions which required antibiotic prophylaxis 

before dental procedure including congenital heart disease or valvular heart disease, 

previous history of bacterial endocarditis or rheumatic fever, total joint replacement, 

and end-stage renal disease, and (3) fully edentulous subjects. Such subjects are 

excluded for all models. 

 

 

3.3 Data Collection 

In each survey, general demographic data (age, gender, educational level, 

income, marital status), behavioral data (smoking status, alcohol consumption, 

exercise/physical activity), family history of illness, underlying diseases (diabetes 

mellitus, hypertension)  are collected by self-administered questionnaires. Physical 

examinations, i.e., blood pressure (BP), heart rate, blood glucose level, weight, height, 

and waist & hip circumference, were performed by clinicians and trained personnel 

from Ramathibodi Hospital. Laboratory tests under fasting state were carried out 

included glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), 

immunoglobulin G3, interleukin 6 and a complete blood count (CBC). 
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3.4. Study Factor and Measurements 
3.4.1. Self-administered data 

Demographics 

Demographic data such as age, gender, education and income are reported 

by the individual themselves using case-report forms.  

Risk behaviors 

Subjects are categorized into (1) non-smoker (2) ex-smokers and (3) 

current-smokers, based on multiple questionnaires such as past/current smoking habits, 

quantity and duration of smoking, age at start or quit smoking. 

Alcohol drinking habits are also classified as similar, based on history of 

alcohol consumption, along with frequency, duration, and type of alcohol. 

Oral factors 

Oral and dental examinations are carried out by experienced periodontists 

from the Department of Periodontology, Faculty of Dentistry, Chulalongkorn 

University in mobile dental units. Number of teeth and oral hygiene index (plaque score) 

are measured as part of oral parameters. 

 

3.4.2. Physical Examinations 

Body measurements 

Height was measured in centimeters and weight was measured in kilograms, 

while being dressed in normal clothing with shoes taken off. Waist and hip 

circumferences are measured in centimeters with measuring tapes by trained personnel. 

Body mass index (BMI) is calculated from the recorded weight in kilograms divided by 

squared height in meters. Waist-to-hip ratio is calculated from the recorded waist 

circumference in centimeters divided by hip circumference in centimeters.  

Underlying conditions 

Underlying conditions are identified from physical and laboratorial 

examinations, along with prescribed medications. Diabetes mellitus was diagnosed if an 

individual had fasting blood sugar (FBS) ≥ 126 mg/dl or had been taking anti-diabetic 

drugs. Hypertension was diagnosed if the participant had systolic blood pressure (SBP) 

≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg or had been taking 

prescribed anti-hypertensive drugs. Dyslipidemia is identified if the subject has high-
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density lipoprotein (HDL) < 40 mg/dl in male or HDL < 40 mg/dl in female OR low-

density lipoprotein (LDL) ≥ 160 mg/dl OR triglyceride ≥150 mg/dl OR used any lipid-

lowering medications.  

 

3.4.3. Laboratorial Examinations 

Blood samples were collected after 12-hour overnight fasting. Blood 

glucose was measured by plasma samples in mg/dl (Peridochrome, Boehringer 

Mannheim, Mannheim, Germany). High-density lipoproteins and low-density 

lipoproteins were measured in mg/dl using enzymatic-calorimetric assays (Boehringer 

Mannheim, Mannheim, Germany). immunoglobulin G3 in mg/dl, interleukin 6 in mg/dl 

and a complete blood count (CBC) is measured in count per micro liter. 

 

 

3.5. Primary Outcome and Measurements 
The outcome of interest is the periodontal status of the subject at the period 

of examination. The subjects are labelled as “severe” or “non-severe” periodontitis and 

severe periodontitis, according to the periodontitis definition of the Center for Disease 

Control and Prevention – American Academy of Periodontology (CDC-AAP), which 

defined “severe periodontitis” as harboring two or more interproximal sites with clinical 

attachment level ≥ 6 mm that are not on the same tooth AND one or more interproximal 

sites with periodontal pocket depth ≥ 5 mm. 

 

3.5.1. Periodontal Examinations 

Periodontal examinations included periodontal pocket depth, and gingival 

recession which were carried out on all fully erupted teeth, except third molars and 

retained roots. Periodontal pocket depth is the measurement from coronal margin of 

gingival margin to the tip of a periodontal probe, and gingival recession is the 

measurement from coronal margin of gingival margin to the cementoenamel junction. 

The parameters are measured applying a periodontal probe - University of North 

Carolina 15 (PCP-UNC15) on six sites, i.e., mesial, mesio-buccal, mesio-lingual, disto-

buccal, disto-lingual, and lingual site of the gingival sulcus per tooth. These 
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measurements were made in millimeters and were rounded to the nearest whole 

millimeter.  

Calibration and standardization for periodontal measurements were 

implemented among six to eight examiners before the survey. The weighted kappa 

coefficients (±1 mm) were used to determine the agreement of inter-examiner and intra-

examiner (Table 3.1). Between each pair of examiners, the kappa ranged from 0.72 to 

1.00 for periodontal pocket depth and 0.67 to 1.00 for clinical attachment level/ gingival 

recession. The weighted kappa coefficients (±1 mm) within each examiner ranged from 

0.85 to 1.00 for periodontal pocket depth and from 0.80 to 1.00 for clinical attachment 

level. 

 

3.5.2. Periodontal classification 

Due to the absence of homogenous classification for chronic, we label the 

samples of our dataset based on CDC-AAP classification. To classify a sample as 

chronic periodontitis, clinical attachment level is required, so it is calculated. The 

subtraction of gingival recession from pocket depth results in the measurement from the 

cementoenamel junction to the tip of the periodontal probe, hence clinical attachment 

level is resulted. Whereas CDC-AAP criteria has four classes of periodontitis (non, 

mild, moderate, and severe), we categorize our samples into two, severe periodontitis 

and non-severe periodontitis (non, mild, and moderate) as in Table 3.2.  

 

 

3.6. Sample size estimation 

There is no explicit guideline for sample size estimation for machine 

learning model. According to this literature review54, the researchers recommend 

number of sample size for developing a clinical prediction model should be : 

𝑛 = 	 F	
1.96
𝛿 	J	#		𝜙L	(	1 −	𝜙L	)	 

- where 

𝑛 = number of sample size 

𝛿 = absolute margin of error 

𝜙L = anticipated outcome proportion 
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We aim for margin of error ≤ 0.05. The prevalence of severe periodontitis 

in Thai adult population is 26%. So, we anticipate the outcome proportion in our study 

population to be 0.3. At least 322.69 ~ 323 subjects including 97 subjects with severe 

periodontitis is required for our models. 

Available sample size is explored. EGAT 2/3 (2008) has 2,271 subjects and 

2,016 subjects are followed up in EGAT 2/4 (2013). We consider our study to have 

enough sample size to train and test our models 

 

 

3.7 Data Management 

3.7.1 Data Acquirement 

Demographic and medical records 

Demographic and medical data were retrieved from the EGAT databases. 

These were merged with the Excel worksheets of the civil registrations for additional 

data. 

Periodontal databases 

Periodontal databases were constructed, all periodontal parameters for 

EGAT 2/3 and 2/4 were computerized as follows: 

Building the periodontal databases  

Databases were constructed using Epidata version 3.1, separately by EGAT 

2/3 and 2/4, because there were some variables were differently measured for each 

survey. Data entry systems were designed with “tooth by tooth” system. Users had to 

entry all parameters of one tooth including periodontal pocket depth, and gingival 

recession, before moving on to the next tooth. If a particular tooth is missing, the system 

would not allow users to entry any data for that tooth. In addition, databases were 

encoded with specified value or range for each variable to prevent error during data 

entry. 

Data entry (Periodontal parameters)   

Data from case record forms (CRF) were manually checked by a data 

manager before entering data. Legibility of handwriting, minor missing data and 

consistency of all parameters were revised. If handwriting was not clear, the query was 
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done directly to the recorder. Then, data were independently entered twice by two 

persons. These two data sets were then validated, any inconsistence was checked and 

corrected. Finally, all records were manually checked and edited based on the original 

CRF, again. 

 

3.7.2 Data Cleaning 

Selected features and data were retrieved from the main databases. The 

variables were renamed systematically across both datasets in order to combine them 

all together. Then, data cleaning was performed by the data cleaning team, which 

consisted of Prof. Ammarin Thakkinstian, Dr. Anuchate Pattanateepapon, Dr. Attawood 

Lertpimonchai, and Dr. Htun Teza. Regular meeting at least twice a month was 

organized to solve any incorrectness or unclear data. Data were summarized and cross-

checked using pandas library and python 3.8. Any inconsistency or outliners were 

verified and checked with the CRFs to check data validity. All variables, except gender 

and height, were assigned as the time-varying variables for necessary models. 

Gender 

Gender is considered to be consistent across all datasets. Inconsistent data 

value between observations is validated by original case-report form. 

Date of examination 

The time length between the date of examination and the date of birth is 

calculated for the age of the subject at time of examination. The date has to be during 

the survey period and the values that are not or missing are recoded as the middle time 

of the survey period. 

Date of birth 

Similar with gender, date of birth is also assumed to be consistent across all 

dataset. However, when discrepancies are observed, civil registration databases are also 

used as the source. Between the three datasets, the majority value for date of birth is 

selected. 

Education 

The level of education cannot be decreased. Illogical declinations are 

detected and decided by the team. 

Risk behaviors 
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Smoking and alcohol drinking habits were classified within each period with 

multiple questions in questionnaire, then the datasets are merged. The values are 

checked to be logical, such as “current smoker” cannot become a “never smoker” in the 

next observation. If inconsistency was present, the decision is made by the team. 

Body Measurements 

Height, weight, waist and hip were summarized and checked for outliers 

(i.e., exceeds mean ± 4SD). If outliers presented, the original CRF is checked. The 

change of the value overtime would also be checked after merging the datasets. 

Substantial change of weight, waist and hip would be list, and then, its possibility would 

be validated by comparing with other relevant variables. 

Blood pressure 

To determine the data validity of blood pressure, guidelines such as : 

presence of data for both systolic and diastolic blood pressure, within proper range of 

the value, and SBP value being higher than DBP are used. 

Laboratory results 

All laboratory results, which were reported in continuous data, were 

checked for outliers (i.e., exceeds mean ± 4SD). If outliers existed, the likelihood of the 

value is discussed and decided by the team. Illogical values are recoded to be missing 

values. 

 

3.7.3 Carried forward/backward methods 

To replace missing data for some variables, the forward/backward carry 

over methods were used. For example, carried backward method means that never 

smokers in EGAT 2/4 are imputed in EGAT 2/3 as “never smoker” as well. 

 

 

3.8 Data Preparation 

3.8.1 Feature Transformation 

Logistic regression, recurrent neural networks and mixed effects support 

vector machine require the input of the models to be numerical values. In Table 3.3, 

categorical variables are encoded based on the type of categorical variable. Binary 

variables are encoded as 0 and 1. Ordinal variables such as education level are encoded 
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using ordinal encoding, and for nominal categories, label encoding is used for recurrent 

neural networks and one-hot-encoding for mixed effects support vector machine.  

 

3.8.2 Target Labelling 

CDC-AAP criteria uses both the measurement of clinical attachment level 

and periodontal pocket depth to classify as periodontitis as stated in Table 3.2. Subjects 

that are eligible for “Severe” criterion of the classification are labelled as “Severe”, and 

the rest are labelled as “Non-severe”. For support vector machine, “Non-severe” 

subjects are encoded as -1 and “Severe” subjects are encoded as 1. For other models, 

“Non-severe” subjects are encoded as 0 and “Severe” subjects are encoded as 1. 

 

 

3.9 Model Architecture 

3.9.1 Feature Selection 

From EGAT datasets, the features are extracted as observed from literature 

reviews and as recommended by expert opinion in periodontology. For mixed effects 

logistic regression model, stepwise forward selection method is used and none for 

machine learning models. 

 

3.9.2 Data Splitting 

The total samples are split in 80% for model training and 20% for model 

performance testing as per Pareto principle.  

 

3.9.3 Model Development 

The extracted features are age, gender, education, income, body mass index, 

waist and hip circumferences, smoking, alcohol drinking, diabetes mellitus, 

hypertension, hyperlipidemia, number of tooth present, plaque score,  lymphocytes, uric 

acid, triglycerides, cholesterols, high density lipoproteins, low density lipoproteins and 

lipid lowering drugs taking status.  

 

For statistical model, logistic regression model is applied with Ridge 

penalization ( L2 regularization ). For machine learning models, recurrent neural 
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networks and mixed effects support vector machine are applied and hyperparameters 

are tuned. 

For support vector machine, hyperparameters are  

1. kernel type,  

2. C (regularization parameter) and  

3. gamma (kernel coefficient) values.  

For recurrent neural networks, hyperparameters are  

1. number of hidden layers, 

2. activation functions and 

3. batch size. 

 

3.9.4 Performance Evaluation 

The performance of all models will be evaluated using accuracy, sensitivity, 

specificity, positive likelihood ratio, positive predictive value, negative predictive value, 

C-statistics (area under receiver operating characteristic curve), receiver operating 

characteristic curve.  

 

 

3.10 Limitations 

From literature reviews, it is observed that including oral features in the 

models predict better than not including them. Electric Generation Authority of 

Thailand (EGAT) dataset does not include much oral features, such as tooth mobility, 

bleeding on stimulation and more. While we would try to compensate the issue by 

deploying more complex and higher performing models, the good models should 

perform better with such features. 

 

  



Htun Teza  Methodology/ 52 

 

 

3.11 Budget  

No. Item Units No of units Unit cost 

(THB) 

Total cost 

(THB) 

1 Manuscript 

Publication 

Article 1 3,000 3,000 

2 Data Management Record 4,325 5 21,625 

3 Data Analysis Analysis 40,000 1 40,000 

Total 64,625 

 
3.12 Time Frame 

No
. 

TOR Time (months) 
2020 2021 
2 3 4 5 6 7 8 9 1

0 
1
1 

1
2 

1 2 3 4 5 

1 Proposal 
Development 

* * * * * *           

2 Finalized 
proposal 

     * *          

3 Proposal 
defend 

     * *          

4 Ethics 
Committee 

      * *         

5 Data 
management 

       * *        

6 Data 
preprocessing 

       * * *       

7 Model 
development 
and evaluation 

       * * * * * *    

8 Proceeding 
manuscript 

          * *     

9 Proceeding 
submission 

           *     

10 Thesis 
Manuscript 

            * * * * 

11 Thesis defense                * 
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Table 3.1. Calibration of periodontal examination (weight kappa ± 1mm) 
 Periodontal pocket depth Clinical attachment level/ 

Gingival Recession 
 Inter-examiner Intra-examiner Inter-examiner Intra-examiner 
EGAT 2/3 0.77 – 0.89 0.87 – 0.91 0.67 - 0.94 0.90 - 0.96 
EGAT 2/4 0.74 - 1.00 0.87 - 1.00 0.78 - 1.00 0.87 - 1.00 

 
Table 3.2. Labeling Criteria for the dataset 
Label Case Definition 
Non-severe 
periodontitis 

No periodontitis No evidence of mild, moderate, or severe 
periodontitis 

Mild periodontitis ≥2 interproximal sites with clinical 
attachment level ≥3 mm, and ≥2 
interproximal sites with periodontal pocket 
depth ≥4 mm (not on same tooth)  
or one site with periodontal pocket depth 
≥5 mm 

Moderate 
periodontitis 

≥2 interproximal sites with clinical 
attachment level ≥4 mm (not on same 
tooth),  
or ≥2 interproximal sites with periodontal 
pocket depth ≥5 mm (not on same tooth) 

Severe 
periodontitis 

Severe 
periodontitis 

≥2 interproximal sites with clinical 
attachment level ≥6 mm (not on same 
tooth) and ≥1 interproximal site with 
periodontal pocket depth ≥5 mm 

 
Table 3.3. Feature transformation 

Feature Original Form Encoding Model Required 
Form 

Type Possible value Encoded value 
Demographics 
Age continuous ≥43 Similar to original form 
Gender categorical Male, Female Binary Encoding 0, 1 
Education categorical Less than secondary 

school, vocational or 
diploma, 
higher bachelor’s 
degree, 
missing value 

Ordinal Encoding 0, 1, 2 

Income categorical < 20,000, 
20,000 – 49,999, 
>50,000 

Ordinal Encoding 0, 1, 2 

Body Mass Index continuous ~ Similar to original form 
Waist-to-hip ratio continuous ~ Similar to original form 
Underlying diseases 
Diabetes Mellitus categorical negative, positive Binary Encoding 0, 1 
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Hypertension categorical negative, positive Binary Encoding 0, 1 
Hyperlipidemia categorical negative, positive Binary Encoding 0, 1 
Risk behaviors 
Smoking habit categorical non-smoker, ex-

smoking, current 
smoker 

Ordinal Encoding 0, 1, 2 

Alcohol drinking habit categorical Never drinker, ex-
drinker, current 
drinker 

Ordinal Encoding 0, 1, 2 

Oral features 
Number of teeth continuous ≥1 & ≤28 Similar to original form 
Plaque score continuous 0~100 Similar to original form 
Laboratorial factors 
Lymphocytes continuous ~ Similar to original form 
Uric acid continuous ~ Similar to original form 
Triglycerides continuous ~ Similar to original form 
Cholesterols continuous ~ Similar to original form 
High density 
lipoproteins 

continuous ~ Similar to original form 

Low density 
lipoproteins 

continuous ~ Similar to original form 

Lipid lowering drugs 
taking status 

categorical negative, positive Binary Encoding 0,1 

 
Figure 3.1. Model Architecture 

 
 

ModelInput Probability of having 
periodontitis 

Binary 
classification

Log odds of having 
periodontitis 
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CHAPTER IV 

RESULTS 

 

 

4.1. Data Preparation 
As shown in Figure 4.1, 2271 subjects are included in the EGAT 2/3 

survey, and 2016 subjects are examined in EGAT 2/4 survey. Interested features are 

initially selected by consultations with the advisor team. In five groups, the initial 

variables are – 

1. Demographics – age, gender, education level, income, body mass index, 

and waist to hip ratio 

2. Underlying diseases – diabetes mellitus, hypertension, dyslipidemia, 

and chronic kidney disease 

3. Risk behaviors – smoking and alcohol drinking habits 

4. Oral features – number of present/remaining teeth and plaque score 

5. Laboratorial features – lymphocytes, uric acid, triglycerides, 

cholesterols, high density lipoproteins, low density lipoproteins, and 

lipid lowering drugs taking status.  

The resulting data is split into 1817 distinct training subjects (80%) and 

454 distinct testing subjects (20%) datasets using Pareto principle and the process is 

done cautiously to avoid situations where the same individual appears in both datasets.  

 

 

4.2. Models 

Seed of 1996 is set in all developing environments for reproducibility. All 

models are developed using 64bit 2.3 GHz Dual-Core Intel Core i5 processor.  
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4.2.1. Mixed effects logistic regression 

The model is developed in STATA/SE (Special Edition) version 16.0 for 

64-bit Intel processors. Built-in library of “melogit” — Multilevel mixed-effects 

logistic regression is used to fit models for binary and binomial responses which is 

appropriate for our objective. Mixed effects model with random intercept is applied 

with random effects for each subject. 

Data Manipulation  

Dataframe is managed in the long format where repeated measures of the 

same individual are recorded in separate row. Within 1817 distinct training subjects, 

1817 subjects are observed in 2008 and 195 subjects in 2013. 

Feature selection 

Appropriate feature selection is required for statistical modelling, and 

stepwise forward selection is done. From the selected variables, univariate mixed 

effects models for each are developed, and they are ranked in increasing order based 

on their statistical significance which is p-value of Wald chi-squared test less than 0.1. 

It results in 15 significant variables out of initial 21. Afterwards, multivariate models 

are built by including one variable by one beginning from the most significance (least 

p-value). If the significant variable is no longer significant in multivariate regression, 

it will not be included in the subsequent regression with next significant variable.  

Model Development 

For the multivariate regression, final model includes six variables – 

gender, education level, diabetes mellitus, smoking habits, number of 

present/remaining teeth and plaque score. Fixed effects coefficients of the included 

variables are stated in Table 4.1. The output of the model is dichotomized using the 

prevalence of severe periodontitis in our dataset which is 35% and the final model is 

evaluated using the following metrics: sensitivity, specificity, accuracy, 

discrimination, positive likelihood ratio, positive and negative predictive value. 

Performance  

Application of the final model as the risk prediction model has great 

performances. Without considering the known random effects of the training samples, 

the model identifies 91.3% of positive cases and 90% of negative cases correctly with 

90.5% overall accuracy. It has 82.9 and 95.2 positive and negative predictive value 
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respectively. The positive likelihood ratio is 9.18 and the area under receiver operating 

curve is 0.98. It is good discrimination ability, allowing the model to have high 

sensitivity and specificity simultaneously. Figure 4.2. presents the receiver operating 

characteristic curves of the model on training and testing data. 

When the same model is applied on the testing dataset, the model performs 

similarly with discriminative power of 0.98. Discriminative power is evaluated using 

area under receiver operating characteristic curve and values over 0.9 is considered 

outstanding. It is 91.5% accurate with 89.5 sensitivity and 92.5 specificity. Positive 

likelihood ratio of 11.9, positive predictive value of 86.2 and negative predictive value 

of 94.4 are observed. The performance of the model is shown in Table 4.2. 

 

4.2.2. Recurrent Neural Network 

The model is developed in Python 3.8.2 using Spyder integrated 

development environment 4.2.5 version. During the model development process, 

several libraries are applied along the data pipeline. For dataframe management and 

manipulation, NumPy version 1.19.2 and pandas version 1.2.3 are applied. Scalers and 

sample weights are created using Scikit-learn version 0.23.2 and recurrent neural 

networks are developed using Keras version 2.4.3 and TensorFlow version 2.31. For 

data visualizations, Matplotlib version 3.3.1 is used. 

Data Manipulation 

Data frame is managed in the cube format which is similar to the long 

format except the repeated measurements of each individual are stacked in the third 

dimension. Since all training individuals are required to have equal timesteps for 

recurrent neural networks, subjects with only one measurement are dropped and only 

1345 distinct subjects are left. 

For neural networks, numerical inputs are required so discrete or 

continuous variables are included as they are after applying MinMaxScaler to bound 

the values between 0 and 1. Label encoding is applied for categorical variables with 

more than binary class, as in Table 4.3.  

Feature Selection 

All 21 features are applied as the input of the model and dropout layers are 

applied between each hidden layer instead of manual feature selections. 



Htun Teza  Results/ 58 

 

Model development 

Out of 2690 training data, only 858 records have chronic severe 

periodontitis, so class imbalance problem is anticipated. Therefore, class weights of 

0.734 and 1.568 for negative and positive classes are calculated using Scikit-learn 

package. However, Keras consider the concept of class to be ambiguous in 3 and more 

dimensional data so the sample weights are applied using class weight values as a 

workaround. 

For the hyperparameter tuning, basic specifications are set to find the best 

performing model on the data. For all feature sets, 20% of training data is used for 

validation. Simple RNN layer cells and Tanh activation functions are used for all 

nodes in the hidden layers. Dropout rate of 0.2 is put between every hidden and output 

layers so 20% of all connections between nodes are randomly deactivated, therefore it 

is not a fully connected model. One node in the output layer; sigmoid activation 

function is used for binary classification. Binary Cross Entropy is used for loss 

function and accuracy is the monitor metric. Stochastic Gradient Descent is used for 

optimizer. Batch size of 64 is applied for mini-batch optimization. 1000 epochs with 

early stopping are used for time and computation resource constraints. The outputs of 

the model are dichotomized using 0.35 according to the prevalence of severe chronic 

periodontitis in the dataset. Number of hidden layers, number of nodes in each hidden 

layer and learning rate of the optimizers are tuned for the optimal performance 

metrics. Models are trained with various combinations of only one hidden layer to six 

hidden layers, nodes in each layer ranging from 21 to 80 and the learning rate from 1 

to 0.001,  

Performance 

Recurrent neural network with three hidden layers and 70 Simple RNN 

nodes in each layer is applied and learning rate of 1 is used to optimize model loss. 

The resulting model is 92.3% accurate overall with 87.4% sensitivity and 94.7% 

specificity. Along with 88.4% positive predictive value and 94.1% negative predictive 

value, the model has 16.3 positive likelihood ratio. AUC measures the probability that 

a model can correctly discriminate between randomly selected individuals with or 

without the event and 0.95 means the model is very proficient. 
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However, as shown in Table 4.4., when the same model is applied on the 

testing data, the performance diminishes overall with 65.2 accuracy, 42.7 sensitivity 

and 75.7 specificity. The discrimination becomes 0.65 which is very poor. Comparing 

the positive likelihood ratio of 1.7, positive predictive value of 45.3 and negative 

predictive value of 73.8 to respective performances on training dataset, the model can 

be considered overfit. Figure 4.3. presents the receiver operating characteristic curves 

of the overfit model on training and testing data. 

Instead, a new set of hyperparameters is searched with the condition that 

we allow ±5% discrepancy in accuracy performance between two datasets. The final 

model has four hidden layers with 62, 72, 72 and 62 RNN nodes in feed forward order 

and learning rate of 0.01 for optimizer. As seen in Table 4.5., it is evident that the 

performance of the model is inferior compared to the preceding models. Area under 

receiver operating curve of 0.75 is considered only moderate but the model is no 

longer overfit to the training data. Receiver operating characteristic curves of the final 

model on training and testing data are compared in Figure 4.4. 

 

4.2.3. Mixed effects – Support Vector Machine 

The model is developed in R version 4.02 using R Studio 1.3.1056 version. 

Support vector machine is applied as machine learning regressor in mixed effects 

machine learning model. Several packages are applied for the data management and 

model development process. readstata version 0.9.2 is used for importing STATA 

datasets. For the mixed effects – support vector machine, e1071 version 1.7-4 is used to 

model SVM and lme4 version 1.1.-26 to estimate the random effects. pROC version 

1.16.2 and epiR version 2.0.19 is used to evaluate the model performance. 

Data Manipulation 

Data frame is managed in the long format same as mixed effects logistic 

regression models. For support vector machines, numerical inputs are required so one 

hot encoding is applied for categorical variables. No additional data scaling is done other 

than default parameter in e1071 library. 

Feature selection 

No additional feature reduction is done after initial 21 features selected by 

literature reviews and expert opinion. On the contrary, one hot encoding the categorical 
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variables with more than binary class result in additional input features totaling 26 

variables. 

Model development 

Hyperparameters of the overall model are set to be 10 maximum macro 

iterations with 0.01 tolerance and 50 maximum micro iterations with 0.001 tolerance. 

Initial random effect of zero is set. Instead, the hyperparameters of support vector 

regressor are tuned. Kernels, C value and gamma value when applicable are also tuned. 

Nu regression is applied while optimizing multiple nu values. Various combinations of 

nu-value 0.1 to 0.6; linear, gaussian, polynomial kernels with C value 0.1 to 0.0001 are 

applied during the optimization process. 

Performance 

Support vector regressor with nu value of 0.4 is applied. Radial kernel with 

0.2 gamma value and C value of 0.1 is set. Resulting model perform very good with 

overall accuracy of 98.4%. The metrics are 99.7% sensitivity (true positive rate) and 

97.7% specificity (true negative rate). The model are 43.3 times more likely to correctly 

identified the true positive subjects as positive than incorrectly consider the negative 

patients as such. Discriminative power of 0.99 can be considered very proficient. 

However, when validated by the testing dataset as in Table 4.6, the model 

performance is reduced greatly to AUC value of 0.62 when is considered poor. Figure 

4.5. presents the receiver operating characteristic curves of the overfit model on training 

and testing data. The overall accuracy is 62% with only 38.1% of positive predictions 

and 80.1% negative predictions are correctly predicted. The model is considered overfit 

to the training dataset so new hyperparameter sets are searched. 

Nu-regression with nu value of 0.5 and radial kernel is applied. C-value of 

0.1 and gamma value of 0.3 is set and the resulting model is considered as the optimized 

model with balanced performances. Area under receiver operating curve is 0.76 is only 

moderate but when compared to performances on the testing data, it is observed that the 

model is no longer overfit to the training data. Receiver operating characteristic curves 

of the final model on training and testing data are compared in Figure 4.6. The 

performances of the final mixed effects – support vector machine is shown in Table 4.7. 

Table 4.8. presents comparison of all final classification models (Mixed effects logistic 

regression, Recurrent neural networks, and Mixed effects support vector machine). 
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Table 4.1. Fixed Effects Coefficients and Odds Ratio Estimates for Significant 

Variables Retained in the Final Multivariate Mixed Effects Logistic Regression Model 

Variables  Covariates Coefficient (SE) Odd ratios (95% 
CI) 

P-value 

Gender Male 0.97 (0.23) 2.63 (1.68 to 4.10) < 0.001 

 Female ref ref  

Education < High school 2.04 (0.38) 7.68 (3.62 to 16.30) < 0.001 

 Vocational School 1.35 (0.35) 3.86 (1.93 to 7.72) < 0.001 

 Bachelor’s degree 0.29 (0.35) 1.34 (0.68 to 2.64) < 0.001 

 > Bachelor’s 
degree 

ref ref 0.393 

Smoking Non-smoker ref ref  

 Ex-smoker 0.73 (0.21) 2.09 (1.38 to 3.17) 0.001 

 Current smoker 1.68 (0.25) 5.38 (3.28 to 8.83) < 0.001 

Diabetes 
Mellitus 

Positive 0.50 (0.22) 1.66 (1.07 to 2.57) 0.024 

 Negative ref ref  

Number of teeth - -0.06 (0.02) 0.94 (0.91 to 0.97) < 0.001 

Plaque score - 0.03 (0.004) 1.03 (1.02 to 1.03) < 0.001 

Abbreviation: CI: Confidence Interval; SE: Standard Error; ref: Reference covariate 

group. 

 

Table 4.2. Performance of Mixed effects logistic regression 
 

On Training data (95% CI) On Testing data (95% CI) 

%Sensitivity 91.3 (89.5 – 93.0) 89.5 (85.1 – 92.9) 

%Specificity 90.0 (88.7 – 91.3) 92.5 (89.9 – 94.6) 

%Accuracy 90.5 (89.4 – 91.5) 91.5 (89.3 – 93.3) 

AUC 0.98 (0.98 – 0.98) 0.98 (0.98 – 0.99) 

Positive Likelihood Ratio 9.18 (8.05 – 10.46) 11.93 (8.77 – 16.25)  

%Positive Predictive Value 82.9 (80.7 – 85.0) 86.2 (81.6 – 90.1) 

%Negative Predictive Value 95.2 (94.1 – 96.1) 94.4 (92.0 – 96.2) 
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Table 4.3. Label encoding for categorical variables 
Categorical variable Covariate Labels 

Education < High school 0 
 Vocational School 1 
 Bachelor’s degree 2 

 > Bachelor’s degree 3 

Income < 20,000 0 
 20,000-49,999 1 

 50,000 ++ 2 

Smoking never smoker 0 
 ex-smoker 1 

 current smoke 2 

Alcohol drinking non-drinker 0 
 occasional drinker 1 

 frequent drinker 2 

 
Table 4.4. Performance of overfit recurrent neural network 
 

On Training data (95% CI) On Testing data (95% CI) 
%Sensitivity 87.4 (85.0 – 89.6) 42.7 (36.0 – 49.7) 
%Specificity 94.7 (93.5 – 95.6) 75.7 (71.5 – 79.6) 
%Accuracy 92.3 (91.3 – 93.3) 65.2 (61.4 – 68.8) 
AUC 0.95 (0.94 – 0.96) 0.65 (0.61– 0.70) 
Positive Likelihood Ratio 16.3 (13.5 – 19.8) 1.7 (1.4 – 2.2) 
%Positive Predictive Value 88.4 (86.1 – 90.5) 45.3 (38.3 – 52.4) 
%Negative Predictive Value 94.1 (93.0 – 95.2) 73.8 (69.5 – 77.7) 

 
Table 4.5. Performance of final recurrent neural network 
 

On Training data (95% CI) On Testing data (95% CI) 
%Sensitivity 63.1 (59.7 – 66.3) 58.2 (51.3 – 64.9) 
%Specificity 73.3 (71.2 – 75.3) 73.5 (69.2 – 77.5) 
%Accuracy 70.0 (68.3 – 71.8) 68.6 (64.9 – 72.1) 
AUC 0.75 (0.73 – 0.77) 0.73 (0.68 – 0.77) 
Positive Likelihood Ratio 2.36 (2.16 – 2.59) 2.20 (1.82 – 2.66) 
%Positive Predictive Value 52.5 (49.4 – 55.6) 50.8 (44.4 – 57.3) 
%Negative Predictive Value 80.9 (78.9 – 82.8) 78.9 (74.7 – 82.7) 
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Table 4.6. Performance of overfit Mixed Effects – Support Vector Machine 
 

On Training data (95% CI) On Testing data (95% CI) 
%Sensitivity 99.7 (99.1 – 99.9) 69.6 (62.8 – 75.8) 
%Specificity 97.7 (96.9 – 98.3) 52.0 (47.4 – 56.5) 
%Accuracy 98. 4 (97.8 – 98.9) 57.2 (53.4 – 61.0) 
AUC 0.99 (0.99 – 1.0) 0.62 (0.58 – 0.66) 
Positive Likelihood Ratio 43.3 (32.2 – 58.2) 1.45 (1.27 – 1.65) 
%Positive Predictive Value 95.6 (94.1 – 96.8) 38.1 (33.1 – 43.2) 
%Negative Predictive Value 99.8 (99.5 – 100) 80.1 (75.3 – 84.4) 

 
Table 4.7. Performance of final Mixed Effects – Support Vector Machine 
 

On Training data (95% CI) On Testing data (95% CI) 
%Sensitivity 52.8 (49.5 – 56.0) 46.1 (39.1 – 53.2) 
%Specificity 82.7 (80.9 – 84.4) 78.2 (74.2 – 81.8) 
%Accuracy 72.7 (71.0 – 74.4) 68.6 (65.0 – 72.1) 
AUC 0.76 (0.75 – 0.77) 0.70 (0.68 – 0.73) 
Positive Likelihood Ratio 3.05 (2.72 – 3.43) 2.11 (1.69 – 2.64) 
%Positive Predictive Value 60.5 (57.0 – 63.8) 47.2 (40.1 – 54.4) 
%Negative Predictive Value 77.8 (75.9 – 79.6) 77.4 (73.4 – 81.0) 

 
Table 4.8. Performance of all final models (Performance with 95% Confidence 

Interval) 
Metrics\Models Mixed effects Logistic 

Regression 
Recurrent Neural Network Mixed effects Support Vector 

Machine 
 Train Test Train Test Train Test 
%Sensitivity 91.3 

(89.5 – 93.0) 
89.5 

(85.1 – 92.9) 
63.1 

(59.7 – 66.3) 
58.2 

(51.3 – 64.9) 
52.8 

(49.5 – 56.0) 
46.1 

(39.1 – 53.2) 
%Specificity 90.0 

(88.7 – 91.3) 
92.5 

(89.9 – 94.6) 
73.3 

(71.2 – 75.3) 
73.5 

(69.2 – 77.5) 
82.7 

(80.9 – 84.4) 
78.2 

(74.2 – 81.8) 
%Accuracy 90.5 

(89.4 – 91.5) 
91.5 

(89.3 – 93.3) 
70.0 

(68.3 – 71.8) 
68.6 

(64.9 – 72.1) 
72.7 

(71.0 – 74.4) 
68.6 

(65.0 – 72.1) 
AUC 0.98 

(0.98 – 0.98) 
0.98 

(0.98 – 0.99) 
0.75 

(0.73 – 0.77) 
0.73 

(0.68 – 0.77) 
0.76 

(0.75 – 0.77) 
0.70 

(0.68 – 0.73) 
Positive 
Likelihood Ratio 

9.18 
(8.05 – 10.46) 

11.93 
(8.77 – 16.25) 

2.36 
(2.16 – 2.59) 

2.20 
(1.82 – 2.66) 

3.05 
(2.72 – 3.43) 

2.11 
(1.69 – 2.64) 

%Positive 
Predictive Value 

82.9 
(80.7 – 85.0) 

86.2 
(81.6 – 90.1) 

52.5 
(49.4 – 55.6) 

50.8 
(44.4 – 57.3) 

60.5 
(57.0 – 63.8) 

47.2 
(40.1 – 54.4) 

%Negative 
Predictive Value 

95.2 
(94.1 – 96.1) 

94.4 
(92.0 – 96.2) 

80.9 
(78.9 – 82.8) 

78.9 
(74.7 – 82.7) 

77.8 
(75.9 – 79.6) 

77.4 
(73.4 – 81.0) 
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Figure 4.1. Model Development Diagram 

 
 
Figure 4.2. Receiver operating curve of mixed effects logistic regression (left – on 

training data and right – on the testing data) 
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Figure 4.3. Receiver operating curve of overfit recurrent neural network 

 
 
Figure 4.4. Receiver operating curve of final recurrent neural network 
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Figure 4.5. Receiver operating curve of overfit Mixed Effects – Support Vector 

Machine 

 
 
Figure 4.6. Receiver operating curve of final Mixed Effects – Support Vector 

Machine 
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CHAPTER V 

DISCUSSIONS 

 

 

5.1. Minority positive class 

In many real-life problems, imbalanced datasets happen due to multiple 

reasons such as selection of survey population done correctly or not. The class 

imbalance problem can be better understood as three separate problems, which are – 

1. assuming that a performance metric is appropriate when it is not 

2. assuming that the test distribution matches the training distribution when 

it is not 

3. assuming that there is enough minority class when it is not. 

Provost F. (2000)55 states that two fundamental assumptions are made in traditional 

classifiers. The first is that the goal of the classifiers is maximum accuracy (minimum 

error rate); the second is that the class distribution of the training and test datasets is the 

same. Under these two assumptions, predicting everything as the majority class for an 

imbalanced dataset is often the right thing to do.  

Within 776 observations of our 454 testing subjects, 509 observations are 

negative. Considering if a classification model predicts all observations to be negative, 

267 observations are incorrectly identified as negative (false negative), and 509 

observations are correctly identified as negative thus true negative. While there are zero 

observations for both correctly identified positives (true positive) and incorrectly 

identified positives (false positive), we will have 65.6% accuracy rate regardless of the 

usability of such model.  

Thus, we evaluate our models with six different metrics including sensitivity 

and specificity. Sensitivity is the ratio of true positive to all positive observations where 

specificity is the same but for negative cases. Positive predictive value is the ratio of 

true positive to all observations predicted as positive and the same goes for negative 

predictive value with negative cases. In the stated scenario, the sensitivity of this model 
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is zero in contrast to 100% specificity, meaning the model is unusable. Similarly, 

negative predictive value will be 65.6% and positive predictive value is zero as well 

since the model cannot detect positive (non-disease) subjects.   

Therefore, in machine learning algorithms, hyperparameter tuning is done 

during the training process to optimize the performance of the model. Depending on the 

chosen set of hyperparameters, the model can become overfit to the training dataset like 

several reported models in chapter 4. The model pays a lot of attention to random noises 

in the training data, so they fail to generalize on the data it has not seen before and they 

are considered as high variance. As a result, they perform very well on the training 

dataset but high error rate on the testing dataset. On the contrary, the model can become 

biased by paying very little attention to the training data, resulting in oversimplified 

models. They lead to high error rate on both training and testing data. Further, 

hyperparameter optimization process is done to balance between bias-variance tradeoff 

by comparing the model performance on both training and testing data.  

Even with appropriate optimization, the training data distribution should 

reflect the true distribution or prevalence of the condition, so that the model can learn 

to generalize and perform similarly on new subjects as well. That also applies with the 

data splitting where the testing data distribution should reflect the training data. 

According to 8th Thailand national health survey (2017), 26% of Thai adults and 36% 

of Thai elderly people have severe chronic periodontitis. Our surveys include subjects 

who are current employees of Electricity Generating Authority of Thailand with the 

mean age of 54.4 (43.7 – 75.3) and our training dataset reflects to 1,094 (34.6%) from 

3,158 observations having severe chronic periodontitis which can be considered 

consistent. The testing data includes 267 positive observations (34.4%) out of 776, 

which also matches appropriately. 

Ling (2010)56 states that the imbalanced class problem becomes meaningful 

only if one or both two assumptions above are false; that is, if the cost of different types 

of error (false positive and false negative in the binary classification) is not the same, or 

if the class distribution in the test data is different from that of the training data. The 

first problem is effectively dealt with cost-sensitive models. In recurrent neural 

networks, the amount of error in each subject is evaluated with a loss function such as 

binary cross entropy as shown in Figure 5.1, and the overall error of the model is 
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considered the cost of the model. During the training process, for each set of weights 

and biases for the hidden layers, the cost value is calculated, and these sets are adjusted 

to decrease the cost value as much as possible. Thus, by adjusting the loss value for 

misclassification, we can guide the model into more balanced performance instead of 

preferring the majority class. In Figure 5.2, class weights are applied to make it more 

expensive to misclassify a minority class into majority class than a majority into 

minority, which would further encourage prediction of everything as the majority class. 

Since we have similar class distribution for all our datasets, we can disregard the second 

problem as well. Then the literature suggests inadequate number of samples in the 

minority class for the classifier to learn adequately, which means we have a problem of 

insufficient or small training class which is different from imbalanced class problem. It 

can only be addressed by collecting more minority class subjects. 

 

 

5.2. Limitations of current study 

To adjust for the second assumption made above, class weights are planned 

to be applied for recurrent neural networks. Keras library is a python library with 

TensorFlow backend, a major utility for training neural networks and deep learning and 

our source of choice for the recurrent neural networks. This library considers the concept 

of class to be ambiguous in data with 3 or more dimensions, which is the input data 

dimension for recurrent neural networks. Thus, sample weights based on class weights 

are applied instead as shown in Figure 5.3. For mixed effects support vector machine, 

e1071 library being applied for support vector machine in the model does not have an 

option to adjust for class weights. However, observing that mixed effects logistic 

regression does not require adjusting class weights and recurrent neural networks having 

similar problems even with class weights applied, we consider the poor performances 

are the problem of insufficient positive class rather than imbalanced class problem. 

Mixed effects logistic regression models are considered to be superior to 

simple logistic regression models because they consider random effects in addition to 

fixed effects estimated by conventional models by considering multiple observations of 

the same subject as well. Compared to the best performing model during the literature 

review, Verhulst et al.20 had the most balanced performance for sensitivity and 
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specificity with 80% and 88% respectively and AUC of 0.91. When compared, our 

model performed much better. During the training process, observations of different 

subjects are used by logistic regression to estimate the fixed effects or population 

average effects of the selected predictor variables (gender, education, number of teeth) 

on the target variable which is likelihood of having the condition. In mixed models, 

multiple records of the same subject are used to adjust for subjects specific or random 

effects as well. On the contrary, recurrent neural networks require all the training 

subjects to have exactly same number of timesteps. For other applications of recurrent 

neural networks such as natural language processing, padding and masking techniques 

are applied to adjust, but it is not done in our study. Therefore, we had to remove 

subjects with only one observation from the training and testing data, resulting in 

decreased number of subjects in comparison with other models. We consider this to be 

one of the major factors affecting the performance of our neural network. 

Main advantage of recurrent neural networks is the ability to consider 

previous timesteps in terms of hidden vectors together with current features. However, 

since we have only two timesteps, the first timestep is basically a multilayer perceptron 

(simple artificial neural networks) mapping from features to diagnosis at the first 

timestep. The second timestep will include the context from the first timestep, however 

it is observed that the performance of the recurrent neural networks is inferior compared 

to mixed effects logistic regression model. Typically, the problem with similar models 

is that the model forgetting over long sequences but here we believe small number of 

timesteps as well as small training class result in poor performance of the model. 

For our machine learning models, we did not do further dimensional 

reduction over expert opinions and decision with the advisor team. Mixed effects 

logistic regression, the statistical model requires feature reduction, since including too 

much can result in overfitting. However, we need to balance the appropriate number of 

features since not including all features correlated with the target will result in inferior 

performance of the model. While we do not have a set limit on numbers of included 

parameters within the model, several rules of thumb such as one predictor parameter for 

ten events (one in ten rule), one in twenty rule and one in fifty rules have been 

suggested.57 Here we applied stepwise forward selection with statistical significance of 

0.1 for univariate and 0.05 for multivariate regression. Of course, this approach is not 
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without its drawbacks, since stepwise method is considered unstable58 in a sense that 

addition or removal of a covariate can result in varying p-value of the parameter, 

including scenarios where they become insignificant in multivariate regressions. 

However, we would consider our mixed effects logistic regression to have appropriate 

performance without overfitting or inferior predictive ability. 

For sigmoid-based classification models, the output of the models are 

probabilities of having the positive class. Therefore, we must select a threshold on which 

we would dichotomize the value. The default value would be 0.5, but currently the 

decision threshold is 0.35 to reflect the prevalence of the condition in our data (34.6%). 

However, we can adjust the threshold to overestimate or underestimate since the cost of 

having more false predictions is different based on the problem. By lowering the 

decision threshold, the model will overestimate by considering subjects with lower 

probability to be positive, which means that it will result in less false negatives and more 

false positives. We are willing to accept more false positive subjects since we do not 

want to miss the opportunity of early diagnosis by getting a false negative in the 

screening step. Although the follow up examination is what we are trying to circumvent, 

the screening system will reduce the overall workload necessary regardless as shown in 

Figure 5.4. We need to balance between demerits of following up and demerits of not 

following up. 

 

 

5.3. Application on mock data 

Four mock samples who were present at both surveys are selected and a 

subset of their features which were applied by mixed effects logistic regression model 

are shown in Table 5.1. Four subjects have different disease progression over different 

observations,  

1. continuing healthy periodontium,  

2. persisting severe chronic periodontitis,  

3. developing over time and  

4. recovering over time. 

The selected mock population have 25% female and 3 subjects are 75% non-smokers. 

All subjects have at least a bachelor’s degree, and none has diabetes mellitus. Average 
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number of present teeth in the first survey is 23.5 and in the second, it is 22.25 teeth 

with two subjects losing dentition over time. The female subject has decreased oral 

hygiene over time from 22.7% to 31.8% of tooth surfaces with dental plaque adhesion 

in second survey but still has a better oral hygiene compared to the  male subjects with 

average of 63.12 plaque score. Models with selected final sets of hyperparameters are 

performed on the mock samples to evaluate their performance. All models are logit 

based and the output of the model are transformed into probability which subsequently 

dichotomized into positive and negative. For subjects with higher or equal probability 

with 35%, they are considered to have severe chronic periodontitis. 

The predicted diagnosis and the probabilities outputted by the model are 

reported in Table 5.2. Out of eight observations with 4 positive and 4 negative cases, 

mixed effects logistic regression model has 75% accuracy, 100% sensitivity and 50% 

specificity. Recurrent neural networks are also 75% accurate with 75% sensitivity and 

75% specificity. Mixed effects support vector machine is 75% accurate, 50% sensitive 

and 100% specific. Considering positive subjects to have 100% probability and negative 

subjects as 0% probability, mixed effects logistic regression model has average 7.25% 

deviation in probability, recurrent neural networks have 13.63% deviation and mixed 

effects support vector machine performs the worst with 19.75% deviation.  

Although it should be noted that mixed effects models tried to predict the 

same class for the same subject regardless of the timestep, recurrent neural network was 

able to identify correctly for both surveys of subject D. For subject C, the model predicts 

incorrectly for both timesteps but unlike the competitors, the model is not predicting the 

same class for the same subject. This might be due to the recurrent neural networks 

including more features than mixed effects logistic regression, but mixed effects support 

vector machines include as much features as the neural networks. Then, we should 

consider recurrent neural networks being aware of previous timestep in terms of hidden 

state vector unlike the mixed effects models not knowing the random effects of the new 

subjects that were not in the training dataset. 
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5.4. Application in real life scenarios 

Logistic regression models have been traditionally applied as scoring 

systems. Since logistic regressions are linear relationship of predictor features to the 

log-odds, the intercept of the model with the coefficients of each features multiplied 

with the features of a subject can output the logit of the subject, which in turn can be 

converted to the probability of having the condition. To assess the risk score for 

developing severe periodontitis, 

Risk score = -3.93 + (0.97 x male)  

+ (2.04 x education < High school)  

+ (1.35 x education Vocational School)  

+ (0.29 x education Bachelor’s degree)  

+ (0.73 x Ex-smoker) + (1.68 x Current smoker)  

+ (0.50 x diabetes mellitus)  

+ (-0.06 x number of teeth) + (0.03 x plaque score) 

– where the covariate should be replaced with 1 if applicable and 0 if else. From the risk 

score, the subject’s risk of developing the condition can be calculated as   (!"#$	#&'()

&)	(!"#$	#&'()
. 

 

With machine learning models, the concepts of coefficients are ambiguous 

to calculate manually. Instead, the models are outputted as a file format such as flask, 

pickle, or hierarchy data format ( .hdf5/ .h5py). The model can be imported in web 

services such as Amazon Web Service (AWS) or Heroku to be deployed. Advantage of 

this approach is that the web application can be built to be visually appealing and easily 

applicable by the intended user. The complex applications are done in the background 

and additional processes such as data scraping and preprocessing from electronic 

medical records can be automated as well.  

With necessary internet connectivity, the model can be updated in the 

backend with new data that can also be collected with a web application. With new data, 

the effects of each predictor known as coefficients or weights can be readjusted or 

updated with new evidence. Similar systems can be built for logistic regression models 

as well, but unlike machine learning models, all the previous training data must be stored 

and trained together with the new data so that the coefficient can be updated. Of course, 
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the validity of the user-inputted data would be a concern to be included as the training 

data as well as there will be privacy concern for valid data. Easy access of risk 

assessment programs can lead to overuse or apprehension of those who might not be the 

target population.   

 

 

5.5. Future Research and Study 

For both training and testing of our models, we apply data from the same 

source. For proper model evaluation, external validation using data from other centers 

or surveys is required. Data from other Thai populations as well as different countries 

or ethnicities should be used to evaluate the capability of the model to generalize. If 

necessary, the models should be updated applying new data, especially the recurrent 

neural networks which we consider to be suffering from insufficient training class and 

insufficient timesteps to make full use of its unique capability. 

With appropriate or acceptable performance, the models should be able to 

deploy so that they can help screening the situations where large numbers of people are 

to be periodontally examined such as public health missions. Application programming 

interfaces (APIs) can be used to scan the health information systems to screen the 

patients ahead of time. Web or desktop applications can be deployed at the stations 

where history taking interviews are done. Mobile applications should help the staffs to 

apply while on the go, or even let the examinees apply by themselves. The models will 

be able to save time, material, and human resources necessary to manually measure 168 

individual sites per every examinee. 
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Table 5.1. Subset of mock data samples 
ID Survey Sex Education Smoking Diabetes 

Mellitus 
Number 
of teeth 

Plaque 
score 

Diagnosis 

A 2/3 Female >  
Bachelor’s 
degree 

Non-
smoker 

Negative 22 22.7 Negative 

A 2/4 Female >  
Bachelor’s 
degree 

Non-
smoker 

Negative 22 31.8 Negative 

B 2/3 Male Bachelor’s 
degree 

Non-
smoker 

Negative 21 85.7 Positive 

B 2/4 Male Bachelor’s 
degree 

Non-
smoker 

Negative 21 95.2 Positive 

C 2/3 Male Bachelor’s 
degree 

Non-
smoker 

Negative 26 100 Negative 

C 2/4 Male Bachelor’s 
degree 

Non-
smoker 

Negative 25 74 Positive 

D 2/3 Male Bachelor’s 
degree 

Ex-
smoker 

Negative 25 44 Positive 

D 2/4 Male Bachelor’s 
degree 

Ex-
smoker 

Negative 21 50 Negative 

 
Table 5.2. Performance of different classification models on the mock data samples 

(0.35 as decision threshold) 

ID Survey True 
Diagnosis 

MELR RNN MESVM 

A 2/3 Negative N (0.01) N (0.06) N (0.24) 
A 2/4 Negative N (0.01) N (0.03) N (0.23) 
B 2/3 Positive P (0.85) P (0.75) P (0.36) 
B 2/4 Positive P (0.88) P (0.53) P (0.36) 
C 2/3 Negative P (0.50) P (0.45) N (0.31) 
C 2/4 Positive P (0.35) N (0.23) N (0.31) 
D 2/3 Positive P (0.36) P (0.57) N (0.30) 
D 2/4 Negative P (0.46) N (0.29) N (0.31) 

Abbreviations- 

MELR = Mixed Effects Logistic Regression 

MESVM = Mixed Effects Support Vector Machine 

N = None or Non-severe chronic periodontitis 

P = Severe chronic periodontitis 

X (0.0) = Predicted diagnosis (probability of having severe chronic periodontitis) 

RNN = Recurrent Neural Networks  
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Figure 5.1. Cost function for imbalanced class 

 
 
Figure 5.2. Class weight-adjusted cost function 
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Figure 5.3. Sample weight-adjusted cost function 

 
 
Figure 5.4. Screening system in action 
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